REPORT No. 424 # WIND-TUNNEL RESEARCH COMPARING LATERAL CONTROL DEVICES, PARTICULARLY AT HIGH ANGLES OF ATTACK # IV—FLOATING TIP AILERONS ON RECTANGULAR WINGS By FRED E. WEICK and THOMAS A. HARRIS #### SUMMARY This report is the fourth of a series on systematic tests conducted by the National Advisory Committee for Aeronautics, which compare lateral control devices with particular reference to their effectiveness at high angles of attack. The present report covers tests with floating tip ailerons on rectangular Clark Y wings. Ailerons of two profiles were tested—symmetrical and Clark Y, both with adjustable trailing-edge flaps. Each form was tested at three hinge-axis locations, both with and without vertical end plates between the ailerons and the wing proper. The results from these tests are compared with the results from tests on a wing of the same over-all size equipped with average-sized ordinary ailerons. All the wing-tip floating ailerons tested had about the same characteristics throughout except for their effect on the general performance of the wing. The general performance was found to be definitely poorer for all of the rectangular wings with floating tip ailerons than with a wing having the same over-all dimensions and ordinary ailerons. At the stall and just above, the rolling control was less than an assumed satisfactory value, but was appreciably better than with the standard wing with ordinary ailerons. At angles of attack above 22° the control with the wing-tip ailerons was found to be greater than the assumed satisfactory value, whereas the ordinary ailerons on the standard wing failed almost completely. The wings with floating tip ailerons gave no appreciable adverse yawing moments (body axis), but gave large favorable ones at high angles of attack. The instability in rolling was not as bad as for the wing with ordinary ailerons. ## INTRODUCTION This report describes the fourth of a systematic series of investigations in which it is hoped to compare all types of lateral control devices which have been satisfactorily used or which show reasonable promise of being effective. In this series of investigations it is planned first to test the various types of ailerons and other control devices on rectangular wings of aspect ratio 6. Later the best of these control devices are to be tested on wings with various amounts of taper and with different tip shapes. Still later the best control devices are to be tested on wings designed to improve lateral stability by giving them such features as washout, dihedral, and sweepback. In the entire series of investigations the various devices are to be subjected to the same program of wind-tunnel tests which, it is thought, include all factors directly connected with lateral control and stability that can be satisfactorily handled in a routine manner in a wind The tests include regular 6-component force tests with the ailerons or other control devices both neutral and deflected various amounts; rotation tests in which the model is rotated about the tunnel, or wind, axis and the rolling moment measured; and freerotation tests showing the range and rate of autorotation. Because of the large effect of yaw on the lateral stability, the tests are made not only at 0° yaw, but also with an angle of yaw of 20°, which represents the conditions in an average sideslip. The tests show the relative merit of the various control devices in regard to lateral controllability, lateral stability, and general performance as shown by the lift and drag characteristics. The first report of this series (reference 1) deals with three sizes of ordinary ailerons. One of these is a medium-sized one taken from the average of a number of conventional airplanes and is used as the standard of comparison throughout the entire investigation. Other work that has been done in this series of investigations is reported in references 2 and 3. The present report covers a similar, but preliminary, investigation on wings with floating wing-tip ailerons. A limited amount of work has been done previously on wings with floating ailerons (references 4 to 7), but the results are not sufficiently correlated and complete to cover all the main factors involved. The wings used in the present tests were rectangular in plan and the area of the ailerons was included as a part of the wing area. The tests were made with ailerons having two different airfoil sections, both forms being equipped with trailing-edge flaps. The ailerons were tested with three different axis locations, both with and without two types of end plates. Subsequent tests will be made with narrow chord and tapered floating wingtip ailerons. ## APPARATUS AND MODELS Wind tunnel.—The 7 by 10 foot wind tunnel of the National Advisory Committee for Aeronautics, which is being used for the entire investigation, has an open jet and a single, closed return passage. The tunnel, the balance, and the associated apparatus are described in detail in reference 8. For the force tests the model is mounted on a spindle attached to a floating framework surrounding the test section of the air stream. The balances are arranged to measure the six components of the aerodynamic forces and moments with respect to the wind axes. The floating angles of the ailerons are measured by an optical device mounted outside the air stream. For free-autorotation and forced-rotation tests the model is mounted on a shaft on the jet center line. This shaft is driven through reduction gears by a small electric motor. The spindle and driving apparatus are mounted on the balance floating framework. In the free-autorotation tests the rate of rotation is determined and in the forced-rotation tests the rolling moment, while the model is rolling, is measured directly on the regular rolling-moment balance. Models.—The wing models used were 10-inch chord Clark Y wings of aspect ratio 6. (Fig. 1.) Floating tip ailerons of 6-inch span were included as part of the wing. They were designed to give about the same rolling control at an angle of attack of 10° as the plain standard ailerons. (Reference 1.) The floating ailerons were secured to an interconnecting shaft supported on bearings in the wing proper. They could be locked on this shaft while deflected with respect to each other, but free to move with respect to the remainder of the wing. The ailerons were statically balanced about the hinge axis at any of the three axis locations; namely, 10 per cent, 15 per cent, and 20 per cent of the chord from the leading edge of the wing. (Fig. 1.) The tests were made on ailerons of two different profiles, the symmetrical N. A. C. A. 0010 and the Clark Y. The ailerons were equipped with adjustable trailingedge flaps 20 per cent of the chord in width. As shown on Figure 1, two types of end plates were used, one triangular and the other circular. The wing proper was constructed of laminated mahogany to an accuracy of ± 0.005 inch. Metal bearings were set into the ends of the wing to support the aileron shaft. The ailerons were of composite construction. The leading edge nose piece ahead of the axis was made of lead or brass. The rest was built up, the ribs being of either mahogany or balsa wood and the covering of either paper or balsa wood. The form of the ailerons was not as accurately maintained as that of the remainder of the wing, owing to slight warp- age and looseness of the paper covering caused by changing atmospheric conditions. The end plates were made of %6-inch sheet aluminum. #### TESTS AND RESULTS All tests were made at a dynamic pressure of 16.37 pounds per square foot which corresponds to an air speed of 80 miles per hour under standard atmospheric conditions. The scale of all tests is the same, the Reynolds Number being 609,000. Test to find the effect of axis location.—The first tests were made to determine the effect of the three axis locations. These tests were made on the wing with the symmetrical floating tip ailerons. The flaps were neutral and no end plates were used. The first tests on these models consisted of measuring the six components of aerodynamic forces and moments and the floating angles of the ailerons over an angle-of-attack range from -10° to $+60^{\circ}$, with the ailerons floating with respect to the wing and locked neutral with respect to each other. These tests were made at both 0° and -20° yaw. Force tests were next made with the ailerons deflected with respect to each other, over an angle-of-attack range from 0° to 40°. The right aileron was deflected up and the left down. The 0° yaw tests were made with the ailerons deflected $\pm 10^{\circ}$, $\pm 20^{\circ}$, and $\pm 30^{\circ}$. At -20° yaw the tests were made with only one aileron setting, $\pm 20^{\circ}$. This aileron deflection is the maximum necessary to give the assumed satisfactory control, as determined from a number of flight tests (this subject is more fully discussed further on in this paper and in reference 1). Under most conditions the ailerons floated satisfactorily; however, they fluttered violently at angles of attack between 9° and 14° when pivoted at the 20 per cent axis location and with the ailerons deflected ±20°. The results of these tests are given in Tables I and II as absolute coefficients of lift and drag and rolling and yawing moments: $$C_{L} = \frac{\text{Lift}}{q \ S}$$ $$C_{D} = \frac{\text{Drag}}{q \ S}$$ $$C_{l'} = \frac{\text{Rolling moment}}{q \ b \ S}$$ $$C_{n'} = \frac{\text{Yawing moment}}{q \ b \ S}$$ where S is the total wing area, b is the wing span, and q is the dynamic pressure. The coefficients as given above are obtained directly from the balance and refer to the wind (or tunnel) axes. In special cases in the discussion where the moments are used with reference to the body axes the coefficients are not primed. Thus, the symbols for the rolling and yawing moment coefficients about the body axes are, respectively, C_l and C_n . The
rolling and yawing moments at 0° yaw with ailerons deflected are the respective moments due to ailerons alone. At 20° yaw with the ailerons neutral the moments as given are due to yaw alone, but with the ailerons deflected they represent only the effect of the ailerons. The floating angles of the left aileron with respect to the chord of the model, designated δ_{AF} , are also included in these tables. Rotation tests were also made on these three models at both 0° and 20° yaw. First, free-autorotation tests instability were determined. The degree of the rolling instability is expressed in terms of the coefficient $$C_{\lambda} = \frac{\lambda}{q \ b \ S}$$ where λ is the rolling moment due to the asymmetric distribution of the load along the span when the wing is rolling. The results of the free-autorotation tests are given in Table III and the results of the forced-rotation tests in Table IV. The coefficients as given FIGURE 1.—Diagrams of the various model arrangements with floating tip allerons were made at 0° yaw, in which the model was mounted on the spindle, which was free to rotate. In these tests the range of angles of attack at which rotary instability occurred was determined and also the rate of rotation. The rate of rotation is expressed by the ratio $\frac{p'b}{2V}$; where p' is the rate of rotation in radians per second, b is the span of wing, and V is the velocity of air. Next, forced-rotation tests were made at a constant rate of rotation, with the model first at 0° and then 20° yaw. These tests were made at a rate of rotation corresponding to $\frac{p'b}{2V} = 0.05$ which value, according to special flight tests, approximates the maximum rate of rolling caused by gusty air. (Reference 1.) In the forced-rotation tests the range of angles of attack at which rolling instability occurred and the intensity of the rolling above are with respect to the wind axis, which corresponds to the center line of the air stream. From a comparison of the results of these tests with the results of the tests on the wing with the standard ailerons (reference 1) it was found that the $C_{L\max}$ speedrange ratio, and rate of climb of the wings with floating-tip ailerons were much poorer. The control at high angles of attack, however, was better for all cases with floating tip ailerons. With the ailerons hinged at the 15 per cent axis location the results were superior to those at the other axis locations. Tests to find the effect of end plates.—The effect of end plates was determined by making a regular series of force and rotation tests on the wing with the symmetrical tip ailerons hinged at the 15 per cent axis location, first with the triangular and then with the circular end plates. (Fig. 1.) The results of these tests are given in coefficient form in Tables V, VI, VII, and VIII. The triangular end plates increased the maximum lift slightly and decreased the minimum drag. They FIGURE 2.—Variation of maximum lift and the ratio of maximum lift to minimum drag with flap angle. Clark Y airfoll with N. A. C. A. 0010 symmetrical tip floating also improved the control at 20° yaw. The circular end plates increased the maximum lift, but also increased the minimum drag, and improved the control at 20° yaw somewhat more than the triangular end plates. It was decided not to continue the tests with circular end plates, however, owing to the increase in minimum drag. Tests with aileron flaps deflected.—Preliminary tests with the idea of improving the lift and drag characteristics with both types of floating tip ailerons were made with the aileron flaps deflected up various amounts. This flap deflection made the ailerons float at higher angles of attack. The tests were made to determine the maximum lift and minimum drag coefficients only. Inasmuch as the effect of the flaps on maximum lift was small, the flap settings were in most of the cases varied throughout a sufficient range to find the highest value of the speedrange criterion, $C_{L_{\max}}/C_{D_{\min}}$. The tests were made with all three axis locations and both with and without the triangular end plates. The results are given in Figures 2 and 3. With the symmetrical tip ailerons (fig. 2) the maximum value of the ratio $C_{L_{\max}}/C_{D_{\min}}$ occurs in nearly all six tests at a flap setting of about 2° up. Above this angle of attack as the flap angle increases, this ratio decreases, although the maximum lift continues to increase very slightly. With the flaps up 12°, however, the ailerons flutter violently. With the Clark Y ailerons, Figure 3 shows FIGURE 3.—Variation of maximum lift and the ratio of maximum lift to minimum drag with flap angle. Clark Y airfoll with Clark Y tip floating allerons that the highest ratio of maximum lift to minimum drag occurs for all tests with the flap up about 11°. Tests were also attempted with the ailerons definitely unbalanced statically, in order to make them float at a higher angle of attack and thus increase the lift, but owing to excessive aileron flutter the tests could not be completed. Final tests with best flap settings.—Final tests were made with the best flap settings as found above, with both sets of ailerons and all axis locations, both with and without triangular end plates. These tests consisted of complete force and rotation tests with the ailerons neutral, and complete force tests with ailerons deflected $\pm 10^{\circ}$, $\pm 20^{\circ}$, and $\pm 30^{\circ}$, all at both 0° and 20° yaw. The test procedure and the angle-of-attack range were the same as for the first of the previously listed tests. The symmetrical tip ailerons with the flaps up 2° fluttered violently when deflected $\pm 20^{\circ}$, from 9° to 14° angle of attack, when hinged at the 20° per cent axis location, both with and without the triangular end plates. The force-test results with the symmetrical tip ailerons with the flaps up 2° and without end plates are given in Tables IX and X. The rotation-test results on the same models are given in Tables XI and XII. Likewise, the force and rotation test results on the same model with triangular end plates are given in Tables XIII and XIV, and XV and XVI, respectively. The results of the force and rotation tests on the wings with the Clark Y tip ailerons with flaps up 11°, with and without triangular end plates, are given in Tables XVII to XXIV. Results of one of the tests with the symmetrical tip ailerons at the 15 per cent location, with flaps 0° and no end plates, are shown in Figure 4 for ailerons deflected ±20°. On the same figure, for comparison, the results are also given from the tests with the standard wing with 25 per cent chord by 40 per cent semispan ordinary ailerons deflected $\pm 25^{\circ}$. These curves show the variation of the coefficient of rolling moment due to ailerons, for a given aileron deflection, over an angle-of-attack range from 0° to 40°. A comparative study of the curves shows that the rolling moment with the plain ailerons deflected ±25° is about the same as the rolling moment with the floating tip ailerons deflected ±20° up to 15° angle of attack. Above this angle of attack the rolling moment drops very rapidly for the ordinary plain ailerons, whereas with the floating-tip ailerons the rolling moment increases to a maximum at 22° angle of attack. As the angle of attack is increased above 22° the rolling moment decreases, but not at a very rapid rate. The curve for the tip-aileron rolling moments shown in this figure is representative of all the tip ailgrons tested. Compound floating-tipailerons.—Tests were also tried with the ailerons floating independently of each other and controlled by varying the flap angle to obtain the rolling moments. This aileron arrangement is designated compound floating tip ailerons. With the flap set up 10° on one aileron and down 10° on the other a rolling-moment coefficient of about 0.040 was obtained. At higher flap settings the ailerons fluttered violently. Since the above-mentioned rolling-moment coefficient was not considered satisfactory these tests were not continued. Accuracy.—The accuracy of the results given in this report is the same as that obtained in Part I. (Reference 1.) It is considered satisfactory at all angles of attack except in the burbled region between 20° and 25°. In this region the rolling and yawing moments are relatively unreliable owing to the critical and often FIGURE 4.—Comparison of rolling moments due to ordinary afterons with rolling moments due to floating tip afterons. Clark Y airfoll Yow = 0° unsymmetrical condition of the burbled air flow around the wing. #### DISCUSSION OF RESULTS For a comparison of the different aileron effects the results of the tests are discussed in terms of criterions which are explained in detail in reference 1 and briefly in the following paragraphs. By use of these criterions a comparison of the effect of the different ailerons on the general performance, the lateral controllability, and the lateral stability may be easily made. The results of the above tests in terms of the criterions are given in Table XXV. The criterions for the following aileron arrangements are included in the table for comparison: The wing with the 25 per cent chord by 40 per cent semispan ordinary ailerons, which is used as the standard; and the wing with the 40 per cent chord by 30 per cent semispan ordinary ailerons rigged up 10° when neutral, which is the best of the previously tested ailerons. #### GENERAL PERFORMANCE Wing area required for desired landing speed.—The criterion $C_{L_{\max}}$ is used to indicate the wing area required for a given landing speed, or conversely, for the minimum landing speed obtainable with a given wing area. The coefficient as used herein is based on the entire wing area, including the ailerons. The use of this area in calculating the coefficients was considered a fair basis for comparing floating tip
ailerons with ordinary ailerons as the ailerons represent additional structural weight and span. A comparison of the maximum lift coefficients obtained with the wings equipped with floating tip ailerons and the maximum lift coefficient of the standard wing with ordinary ailerons (Table XXV) shows that the floating tip ailerons decreased the maximum lift coefficient by 10 to 15 per cent. The effects of the changes in aileron arrangements were small. Maximum lift was increased by 3 to 6 per cent as the axis of the ailerons was moved back from the 10 per cent to the 20 per cent location. It was also improved from 1 to 2 per cent by putting the flaps up 2° on the symmetrical tip aileron. The triangular or circular end plates increased the maximum lift from 0 to 3 per cent. Figures 2 and 3 show that the maximum lift was increased still higher as the flap angle was increased beyond the setting for the highest ratio of maximum lift to minimum drag. Speed range.—The criterion for speed range was taken as the ratio of the maximum lift coefficient to the minimum drag coefficient. In all cases with the floating tip ailerons the speed-range ratio is lower than for the standard wing with ordinary ailerons. XXV.) This lower value of the speed-range ratio is due to both the decrease in maximum lift and the increase in minimum drag with the floating tip ailerons. The minimum drag, which varies with the floating angle of the ailerons, has the greater effect of the two. With the wing-tip ailerons the floating angle of the ailerons was different if the angle of attack of minimum drag was approached from a lower angle of attack than if approached from a higher angle. The value of minimum drag as obtained when the angle of attack was decreased to the angle for minimum drag was always the lower and is used in calculating the speed-range ratio in every case. This should be a fair basis of comparison, because in flight the low angle of attack, or high speed, condition is always approached from a high angle of attack, or low speed, condition. The highest value of the speed-range ratio, which is about 15 per cent lower than that for the standard wing, was obtained with the symmetrical tip ailerons hinged at the 15 per cent axis location, with the flaps neutral and the triangular end plates in place. The ratio was about the same with the symmetrical tip ailerons with the flaps up 2°, without end plates for both the 10 and the 15 per cent axis locations. The value for the 20 per cent axis location was worse in every case than for the 10 and 15 per cent locations. The ailerons with the Clark Y section gave results not quite as good as those obtained with the symmetrical tip ailerons, other conditions being the same. Rate of climb.—The criterion for the rate of climb as used in Table XXV is the ratio of lift to drag at a lift coefficient of 0.70. None of the wings with tip ailerons is as good as the standard wing with ordinary ailerons in this respect. With either set of tip ailerons at the 20 per cent axis with flaps up the best amount and triangular end plates, the rate-of-climb criterion is only 2 per cent less than for the standard wing. The value of the criterion decreases as the axis is moved ahead to the 10 per cent position. The lowest values are for the symmetrical tip ailerons with flaps 0° and no end plates, in which case the average value for all three axis locations is about 20 per cent lower than for the standard wing. The rate-of-climb criterion for the wing with the ordinary short, wide ailerons rigged up 10° when neutral is about 10 per cent higher than the best of the wings with the floating-tip ailerons. #### LATERAL CONTROLLABILITY Rolling criterion.—The rolling criterion upon which the control effectiveness of each of the aileron arrangements is judged is a figure of merit that is designed to be proportional to the initial accelleration of the wing tip that follows a deflection of the ailerons from neutral, regardless of the air speed or the plan form of the wing. Expressed in coefficient form for a rectangular monoplane wing the criterion is $$RC = \frac{C_l}{C_L}$$ where C_l is the rolling-moment coefficient about the body axis due to the ailerons. The numerical value of this expression that has been found to represent satisfactory control conditions is approximately 0.075. A more detailed explanation of the derivation of RC and of its more general form which is applicable to any wing plan form is given in reference 1. The comparison of the allerons on the basis of this criterion is given in Table XXV at four representative angles of attack; namely, 0°, 10°, 20°, and 30°. The 0° angle represents the high-speed attitude; $\alpha=10^{\circ}$ represents the highest angle of attack at which entirely satisfactory control with ordinary ailerons can be maintained; $\alpha=20^{\circ}$ is the condition of greatest lateral instability and is probably the greatest obtainable angle of attack in a steady glide with most present-day airplanes; and finally, $\alpha=30^{\circ}$ is given only for comparison with controls for possible future types of airplanes. At 0° angle of attack or at high speed all the floating tip ailerons give very high values of RC. They are like the standard plain ailerons in that at high speed they give more control than is necessary. At 10°, or the highest angle of attack at which the standard ailerons give entirely satisfactory control (and which is also the condition for which all ailerons were designed to give the same control), the values of RC for all floating tip ailerons fall within reasonable limits of that for the standard wing with ordinary ailerons. These ailerons may be arranged to give the same value of RC at this angle of attack by simply changing their maximum assumed deflection. At $\alpha=20^{\circ}$ none of the floating wing-tip ailerons gives entirely satisfactory control. The values vary from 67 to 87 per cent of the respective values at 10° angle of attack. End plates have an adverse effect on the control at this angle of attack for all tip ailerons. All the floating tip ailerons give better control at $\alpha=20^{\circ}$ than the standard ailerons. The values of RC for the wing with the standard ailerons with equal up-and-down aileron displacement, and for the wing with short, wide ailerons rigged up 10° when neutral and having an extreme differential movement, are shown in Figure 5 along with a typical set of results for the floating tip ailerons (symmetrical tips with flaps 0°, 15 per cent axis location, and no end plates). If, as seems hardly probable, it is desired to fly at an angle of attack appreciably higher than 20°, floating tip ailerons will give satisfactory control. At an angle of attack of 30° all the floating tip ailerons give an excess of control over that considered satisfactory, whereas all ordinary ailerons fail almost completely. Lateral control with sideslip.—If a wing is yawed appreciably a rolling moment is set up that tends to raise the forward tip with a magnitude that is always greater, at very high angles of attack, than the available rolling moment due to ordinary ailerons. The highest angle of attack at which the ailerons can balance the rolling moment due to 20° yaw is tabulated for all aileron arrangements as a criterion of control with sideslip. As previously mentioned 20° yaw represents the conditions in an average sideslip. Referring again to Table XXV it may be seen that without end plates the control against 20° sideslip is maintained up to about the same angle of attack (20°) with any of the floating tip ailerons as with the standard ordinary ailerons. With triangular end plates the tip ailerons give slightly better control than the standard ordinary ailerons, the critical angle being from 3° to 5° higher. The wing with the ordinary short, wide ailerons, rigged up 10° when neutral and having an extreme differential movement is still better, however, having control against sideslip up to an angle of attack of 26°. With the circular end plates the control is still better, being sufficient to give control at all angles of attack. Yawing moment due to ailerons.—The desirable yawing moment due to ailerons depends to some extent upon the type of airplane that is being considered. For highly maneuverable military or acrobatic machines, complete independence of the controls as they affect the turning moments about the various body axes is no doubt a desirable feature. On the other hand, for large transport airplanes or for machines to be operated by relatively inexperienced pilots, a favorable FIGURE 5.—Comparison of the values of RC for three alleron arrangements. Clark Y airfoll yawing moment of proper magnitude would be an appreciable aid to safe flying at high angles of attack, where the secondary rolling moment produced by the resulting yawing motion of the airplane would help the usually inadequate rolling moment of the ailerons alone. Finally, it is obvious that a yawing moment tending to turn the airplane out of its bank is never desirable under any circumstances. From an inspection of Table XXV it may be seen that none of the wings with floating tip ailerons give appreciable adverse yawing moments, and the negligible adverse vawing moments which do occur are at the high-speed condition only. All the floating tip ailerons give large favorable vawing moments about the body axes at high angles of attack. At 10° angle of attack the favorable vawing moment is about 11/2 times more than can be obtained with an average rudder, and at 20° angle of attack the ailerons give about four times as much yawing moment as an average rudder. At all angles of attack the yawing moments about the wind axes are small, which explains the small vawing moments about the body axes at high speeds or low angles of attack where the two sets of axes tend to become the same. All wings with the floating tip ailerons are superior to the standard wing with plain ailerons in
this respect. The yawing moment coefficients about the body axis, C_n , with the short, wide ailerons rigged up 10° and operated with extreme differential movement are, however, about the same as those with the floating tip ailerons. #### LATERAL STABILITY Angle of attack above which autorotation is self-starting.—The first criterion of lateral stability is the angle of attack above which the airfoil will start to rotate if mounted on a free shaft parallel to the jet axis. All the wings with floating tip ailerons are laterally stable up to an angle of attack within 1° of 19° which is the same as the standard wing with ordinary ailerons. This angle is about 3° greater than the angle of attack of maximum lift. Stability against rolling caused by gusts.—This is a more severe criterion than the preceding one. It represents the condition of maximum rolling due to gusty air while attempting level flight. This rate of rolling was found from flight tests to correspond to approximately $\frac{p'b}{2V}$ =0.05. (Reference 1.) In all cases at 0° yaw the angle of initial instability in rolling at $\frac{p'b}{2V}$ =0.05 is from 1° to 2° less than that at which autorotation is self-starting. It is about the same as for the wing with standard ailerons. For 20° yaw and all cases without end plates the wings, like the one with standard ailerons, were unstable at angles of attack greater than 9° to 11°. The triangular end plates increased these angles of attack for initial instability to from 12° to 16°, the largest angles being obtained with the Clark Y ailerons hinged at the rearmost axis location. The above criterion shows only the angle of initial instability in rolling. Another criterion that shows the degree of the lateral instability is the maximum unstable rolling moment while the model is rolling, C_{λ} . All the wings showed unsymmetrical conditions in the two directions of rotation. The highest value of unstable C_{λ} in either direction of rotation is given in Table XXV. The values of C_{λ} at 0° yaw for the wings with floating tip ailerons are about half as great as for the standard wing with plain ailerons and about the same as with the short, wide ailerons rigged up 10° when neutral. At an angle of yaw of 20°, the maximum values of C_{λ} with the floating tip ailerons were in all cases about one-third lower than with the ordinary standard ailerons, and were slightly lower than with the ordinary short, wide ailerons rigged up 10° when neutral. #### CONTROL FORCE REQUIRED In the tests herein reported the hinge moments were not measured. When the best floating tip ailerons have been found the hinge moments will be determined if the ailerons are considered of sufficient interest. It is, of course, evident that the hinge moments will be less for the 20 per cent axis than for the 15 per cent axis, and less for the 15 per cent axis than for the 10 per cent axis. #### AILERON FLUTTER At angles of attack above the stall all the floating tip ailerons showed slightly unsteady characteristics; that is, they fluctuated as much as a degree, but not at regular intervals. This fluctuation may have been caused by slight movements of the wing due to the burbled air flow above the stall. With the symmetrical tip ailerons hinged on the 20 per cent axis and the flaps 0° or up 2° , both with and without the triangular end plates, there was a very violent flutter with the ailerons deflected $\pm 20^{\circ}$. This flutter occurred over an angle-of-attack range from 9° to 14° . It had an amplitude of 3° or 4° and was so violent that balance readings could not be taken. ## POSSIBILITY OF CONTROL OF FLAPS ON TIP AILERONS If the flaps on the wing-tip ailerons were made to be controllable in flight the general efficiency of the wings with floating tip ailerons could be greatly improved. The maximum lift coefficient could be increased by moving the flaps up for the conditions of take-off and landing. The rate of climb and the minimum drag could likewise be improved by proper adjustment of the aileron flap angle. #### CONCLUSIONS 1. The general performance, including the wing area required for a given minimum speed, the speed range, and the rate of climb, was found to be definitely poorer for the rectangular wings with floating tip ailerons than with a wing having the same over-all dimensions and ordinary ailerons. - 2. With the flaps turned up a small amount the floating tip ailerons of symmetrical section gave a slightly higher maximum lift coefficient, speed-range ratio, and climbing criterion. - 3. None of the present floating tip ailerons on rectangular wings gave entirely satisfactory rolling control just above the stall ($\alpha=20^{\circ}$), but some gave within 20 per cent of the assumed satisfactory RC. - 4. At an angle of attack of 20° the floating tip ailerons gave greater control than the standard ailerons, but less than the short, wide ailerons rigged up 10° when neutral and operated with an extreme differential movement. - 5. The wings with floating tip ailerons gave no appreciable adverse yawing moments (body axis), but gave large favorable ones at high angles of attack. - 6. Instability in rolling was not as bad with the floating tip ailerons as for the standard ailerons, but was slightly worse at 0° yaw than with plain short, wide ailerons rigged up 10° when neutral. - 7. End plates had relatively small effects. - 8. The differences between the results with the symmetrical and the Clark Y tip ailerons, with the flaps in each case turned up the optimum amount, were small. - 9. The tests indicated that the following aileron arrangements are unsatisfactory because of excessive flutter. - a. The ailerons of symmetrical section floating at the 20 per cent axis location with flaps 0° or up 2°, either with or without end plates. - b. Ailerons unbalanced statically to improve the general performance. c. Ailerons floating independently and controlled by flaps to give the desired rolling moments. Langley Memorial Aeronautical Laboratory, National Advisory Committee for Aeronautics, Langley Field, Va., February 18, 1932. #### REFERENCES - Weick, Fred E., and Wenzinger, Carl J.: Wind-Tunnel Research Comparing Lateral Control Devices, Particularly at High Angles of Attack. I. Ordinary Ailerons on Rectangular Wings. T. R. No. 419, N. A. C. A., 1932. - Weick, Fred E., and Noyes, Richard W.: Wind-Tunnel Research Comparing Lateral Control Devices, Particularly at High Angles of Attack. II. Slotted Ailerons and Frise Ailerons. T. R. No. 422, N. A. C. A., 1932. - Weick, Fred E., and Wenzinger, Carl J.: Wind-Tunnel Research Comparing Lateral Control Devices, Particularly at High Angles of Attack. III. Ordinary Ailerons Rigged up 10° When Neutral. T. R. No. 423, N. A. C. A., 1932. - Bradfield, F. B., and Peatfield, I. L.: Lateral Control at Low Speeds. R. & M. No. 717, British A. R. C., 1920. - Bradfield, F. B., and Simmonds, O. E.: Rolling and Yawing Moments Due to Roll of Model Avro Wings, with Standard and Interplane Ailerons, and Rudder Moments, for Standard and Special Large Rudder. R. & M. No. 848, British A. R. C., 1922. - Knight, Montgomery, and Bamber, Millard J.: Wind-Tunnel Tests on a Model of a Monoplane Wing with Floating Ailerons. T. N. No. 316, N. A. C. A., 1929. - Knight, Montgomery, and Wenzinger, Carl J.: The Effect of Wing-Tip Floating Ailerons on the Autorotation of a Monoplane Wing Model. T. N. No. 336, N. A. C. A., 1930. - Harris, Thomas A.: The 7 by 10 Foot Wind Tunnel of the National Advisory Committee for Aeronautics. T. R. No. 412, N. A. C. A., 1932. TABLE I FORCE TESTS. 10 BY 60 INCH CLARK Y WING WITH SYMMETRICAL TIP AILERONS 100 PER CENT $\,c\,$ BY 20 PER CENT $\,b/2\,$ R. N.=609,000; VELOCITY=80 M. P. H.; YAW= 0° | α | | -10° | -5° | -3° | 0° | 5° | 10° | 12° | 14° | 16° | 17° | 18° | 20° | 22° | 25° | 30° | 40° | 50° | 60° | |--------------------------------|-------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|-------------------------|-------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------| | | δA | | | | | | AILEI | RONS F | LOATI | ig, ne | UTRAL- | -10 PER | CENT | AXI8 | | | | | | | CL
CD
SAF | 0°
0° | -0.246
.054
13° | -0.053
.028
-2° | 0.063
.018
—4° | 0.238
.022
-8° | 0.546
.042
-12° | 0.829
.076
—16° | 0. 929
. 691
18° | 1.013
.109
19° | 1.074
.129
—20° | 1.070
.142
-20.5° | 1. 058
.158
21° | 1.040
.187
-22° | 0. 958
. 216
23° | 0. 635
. 321
25° | 0. 635
. 394
28° | 0. 616
. 544
39° | 0.568
.697
-50° | 0. 488
.824
-57° | | | • | | | | | | В | IGHT AIL | eron up | —LEFT A | ileron d | own | | | | | | | | | Ct'
Ca'
Sar | 10°
10°
10° | | | | 0.035
.002
6° | | 0.037
.005
—6° | | 0.037
.005
-10° | 0.036
.005
-11° | | 0.037
.005
-13° | 0.037
.005
—14° | 0.036
.003
15° | | 0.034
004
23° | 0.023
004
-32° | | | | Ci'
Ca'
δ _A F | 20°
20°
20° | | | | .071
.002
19° | | .074
.005
8° | | .074
.007
3° | .073
.067
1° | | .075
.607
1° | .075
.007
-2° | .078
.004
—4° | | 003
13° | 050
006
-17.5° | | | | Ct'
Ct'
Sar | 30°
30°
30° | | | | .103
.002
29° | | .091
.004
19° | | .084
.004
15° | .081
.004
13° | | .076
.003
12° | .071
.002
11° | .079
.000
10° | | 091
004
-7° | 074
006
-14° | | | | | | | | | | AILI | ERONS | FLOAT | ING, N | EUTRA | L—15 PI | ER CEN | TAXI | }
 | | | | | | |
CL
CD
8AF | 888 | -0.124
.044
18° | 0.032
.017
10° | 0.065
.018
—3° | 0.237
.023
—7° | 0.556
.041
—10° | 0.845
.073
-14° | 0.954
.089
15° | 1.042
.106
-16° | 1.098
.125
-17° | 1.094
.139
-18° | 1.085
.156
-18.5° | 1.064
.188
19.5° | 0.982
.215
-20° | 0. 655
.321
-21° | 0.642
.392
-27° | 0.629
.545
-37° | 0. 585
. 694
45° | 0.502
.847
-53° | | | | | | | • | | 1 | UGHT AIL | BEON UP | —LEPT I | ILERON D | OWN | | | | | | | | | Ct'
Ca'
Sar | 10°
10°
10° | | | | 0.035
.001
9° | | 0.037
.004
4° | | 0.038
.604
-7° | 0.038
.004
-9° | | 0.039
.004
—10° | 0.039
.003
-12° | 0.038
.001
-12° | | 0.035
004
-21° | 0.024
006
-30° | | | | Cr'
Cn'
Sar | නී
නී
නී | | | | .072
.001
20° | | .073
.003
7° | | .073
.005
3° | .072
.005
1° | | .073
.005
—1° | .073
.005
—3° | .080
.002
-4° | | 065
004
-13° | .049
007
-21° | | | | Ct'
Cn'
SAP | 36°
36°
36° | | | | .103
.001
29° | | .088
.002
20° | | .078
.001
16° | .074
.000
15° | | .068
.000
14° | .063
001
13° | 072
002
11° | | 087
002
-5° | 009
12° | | | | | | | | | | AILI | ERONS | FLOAT | 'ING, N | EUTRA | L20 PI | er oen | IXA TI | 3 | | | | | _ | | CL
CD
81F | ဝိဝိဝိ | -0.189
.045
21° | 0.084
.022
15° | 0. 025
. 022
-7° | 0.212
.025
—10° | 0.537
.0-3
-13° | 0.855
.071
—13° | 0.962
.088
—14° | 1.056
.103
—15° | 1.112
.125
—16° | 1.117
.138
-17° | 1.098
.155
-17° | 1.084
.186
-18° | 0.999
.216
18° | 0.668
.326
-20° | 0.645
.393
-28° | 0. 637
.5±9
-36° | 0.602
.702
-41° | 0.521
.837
-49° | | | <u> </u> | | • | | | |] | RIGHT AII | ERON U | —LEFT . | AILERON I | OWN | | | | | | | | | Ct'
Cu'
Sap | 10°
10°
10° | | | | 0.036
.003
8° | | 0.036
.004
-4° | | 0.037
.003
7° | 0.036
.003
9° | | 0.037
.003
—10° | 0.037
.003
11° | 0.036
.000
-11° | | 0.034
005
-21° | 0.024
005
-31° | | | | Ct'
Ca'
Sap | 20°
20°
20° | | | | .073
.001
20° | | .071
.002
9° | | .071
.004
4° | .070
.004
1° | | .071
.005
0° | .072
.004
-2° | .079
.001
-4° | | 065
005
-13° | 049
008
-22° | | | | Cr
Ca
dar | 30°
30°
30° | | | | .105
.001
30° | | .087
.003
20° | | .080
.002
16° | .072
.601
15° | | .068
.001
14° | .064
.001
13° | .073
.000
11° | | 090
001
-4° | 670
010
15° | | | ## TABLE II FORCE TESTS. 10 BY 60 INCH CLARK Y WING WITH SYMMETRICAL TIP AILERONS 100 PER CENT c BY 20 PER CENT b/2 R. N.=609,000; VELOCITY=80 M. P. H.; $YAW=-20^{\circ}$ | α | | 10° | -5° | -8° | 0° | 5° | 10° | 12° | 14° | 16° | 17° | 18° | 20° | 22° | 25° | 30° | 40° | 50° | 60° | |-------------------------------|--|---|---|-------------------------------------|---------------------------------------|--|--|-------------------------------------|--|--------------------------------------|--|---|---|--|--------------------------------------|--------------------------------------|--------------------------------------|---|---| | | 84 | | | | | | AILER | ONS FI | LOATIN | G, NE | JTRAL- | -10 PEB | CENT | AXIS | | | | | | | CL
CD
Ci'
Cn'
8AP | ဝိဝိဝိဝိဝိ | -0, 237
. 036
. 009
. 001
14° | -0.002
.017
001
.002 | 0.075
.018
005
.001
-4° | 0.225
.023
011
.002
-7° | 0.499
.042
017
.002
11° | 0.748
.072
022
.004
16° | 0.837
.086
024
.005
19° | 0.912
.100
027
.006
21° | 0.972
.119
033
.008
22° | 0.996
.129
038
.009
23° | 1. 014
. 140
043
. 010
-24° | 1. 031
. 176
062
. 012
-25° | 1. 011
. 218
063
. 014
27° | 0.702
.335
064
.024
-30° | 0.653
.387
042
.024
-36° | 0.633
.533
028
.026
-48° | 0. 587
. 681
024
. 032
-57° | 0. 490
. 804
021
. 033
-69° | | | | | | | | , | | RIGHT A | leron u | P—LEFT | AILERON | DOWN | | | | | | | | | Ci'
Ca'
Sar | ନ୍ଧୁ
ନ୍ଧୁ
ନ୍ଧୁ | | | | 0.069
003
24° | | 0.071
000
9° | | 0.072
.000
3° | 0.071
.001
.5° | | 0.069
.000
—.5° | 0.067
001
-1.5° | 0.067
002
2.5° | | 0.040
006
5° | 0.029
006
15° | | | | | | | | | | AILE | RONS | FLOAT | ING, NI | CUTRA | L—15 PE | R CEN | T AXIS | | | | | | | | OL
CD
C''
C''
8AP | °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°° | -0.028
.037
.009
.002
17° | 0. 012
. 017
. 002
. 002
. 7° | 0.088
.017
003
.002
-2° | 0. 232
. 022
009
. 002
4° | 0. 507
. 040
015
. 002
9° | 0. 759
. 069
020
. 004
14° | 0.848
.084
022
.005
16° | 0. 928
. 099
025
. 006
17° | 0.992
.115
033
.008
18° | 1. 012
125
037
. 009
19° | 1,032
.138
043
.010
20° | 1.048
.172
064
.013
24° | 1.017
.214
065
.015
-25° | 0.714
.335
064
.024
-29° | 0.657
.387
044
.024
-33° | 0.643
.536
030
.026
-45° | 0.597
.698
026
.032
55° | 0.501
.811
024
.035
-65° | | | | | | | | | RI | GRT AIL | ERON UP | LEFT A | ILERON D | иwo | | | - | | | | | | C!'
Cn'
8AF | 20°
20°
20° | | | | 0.066
004
24° | | 0.069
001
18° | | 0.070
001
4° | 0. 067
. 000
3° | | 0.065
001
2° | 0.064
003
2° | 0. 059
004
1° | | 0.037
008
-2° | 0.028
008
11° | | | | | | | | | | AILE | RONS | FLOAT | ING, N | EUTRA | L—20 PE | R CEN | T AXIS | 1 | | | | | | | CL
Cn
Ci'
Cn'
8AP | 0°
0°
0° | -0. 110
. 036
. 008
. 002
16° | 0.007
.017
.000
.002
6° | 0.071
.019
006
.002
1° | 0. 226
. 023
010
. 002
5° | 0. 504
. 040
015
. 002
10° | 0.764
.068
019
.004
-14° | 0.859
.082
022
.005
16° | 0.945
.097
025
.006
-17° | 1.006
.114
033
.008
-18° | 1. 022
-122
038
- 009
-19° | 1. 045
. 134
045
. 010
-20° | 1. 054
. 170
066
. 012
22° | 1. 023
. 214
068
. 014
23° | 0.715
.332
066
.024
-27° | 0. 655
.396
014
.026
33° | 0.637
.535
031
.026
-45° | 0. 591
. 687
026
. 032
-56° | 0.497
.810
026
.035
-63° | | | | | | | | | R | IGHT AIL | ERON UP | -LEFT A | ILERON D | owx | | | | | | | | | Ci'
Ca'
SAP | 20°
20°
20° | | | | 0.066
006
25° | | Flutter
do
do | | 0. 068
001
6° | 0. 067
. 000
4° | | 0.065
.000
2° | 0.064
002
1° | 0.060
004
0° | 0. 041
009
3° | 0.032
010
-2° | 0. 025
008
-10° | | | # TABLE III ROTATION TESTS. 10 BY 60 INCH CLARK Y WING WITH SYMMETRICAL TIP AILERONS 100 PER CENT 6 BY 20 PER CENT b/2 R. N.=609,000; VELOCITY=80 M. P. H.; YAW=0° AILERONS FLOATING AND NEUTRAL C_{λ} is given for forced rotation at $\frac{p'b}{2V}$ =0.05, (+) adding rotation, (-) damping rotation; $\frac{p'b}{2V}$ values are for free autorotation | | | | | 2. | | | | | | • • | | | | | | |---------------------------------------|---|----------------|----------|--------|---------------|--------|-----------|-----------------|------------|----------------|-------|----------|----------------|--------|----------| | | α | 0° | 12° | 14° | 16° | 18° | 19° . | 20° | 21° | 22° | 23° | 24° | 25° · | 30° | 40° | | , , , , , , , , , , , , , , , , , , , | | | · | | | 10 per | cent axis | | | | • | | · | | - | | (+) Rotation(clockwise) | $\begin{bmatrix} \frac{C_{\lambda}}{p'b} \\ \frac{p'b}{2V} \end{bmatrix}$ | -0.022 | -0.019 | -0.017 | -0.014 | -0.004 | 0.060 | 0. 019
. 163 | 0.154 | 0.011
.149 | 0,123 | 0.031 | -0.004
.031 | -0.010 | -0.008 | | (-) Rotation (counter- | 1 2V
 C\(\frac{p'\text{0}}{2V}\) | 023 | 020 | 018 | 015 | 010 | | .010 | | -,001 | | | 007 | 008 | 007 | | | | | <u> </u> | | | 15 per | cent axis | | <u> </u> i | | | <u> </u> | | | <u> </u> | | (+) Rotation (clockwise) { | $\begin{array}{c} C_{\lambda} \\ \frac{p'b}{2V} \end{array}$ | -0.024 | -0, 021 | -0.019 | -0.016 | -0.005 | 0.072 | 0.016 | | 0.008 | | | -0.005 | -0.011 | -0.009 | | (-) Rotation (counter-
clockwise). | 2V
C _λ
p'b
2V | 021 | 017 | →, 016 | —. 013 | 007 | 172 | .010 | 0.158 | .151
001 | 0.116 | 0.022 | —. 006 | 007 | 005 | | clockwise). | 20 | | | | | | | . 157 | .147 | | | | | | | | | | | | | | 20 per | cent axis | | | | | | | | | | (+) Rotation (clockwise) | C)
p'b
2V | -0.025 | -0,021 | -0.018 | -0.016 | -0,008 | Q. 165 | 0, 017
. 165 | 0, 160 | 0,005
.149 | | | -0.007 | -0,010 | -0,009 | | (-) Rotation (counter-
clockwise). | 2V
C 20
2V | - , 021 | -, 017 | 016 | 013 | 007 | .154 | .011
.160 | .149 | - , 001 | | | —, 007 | 007 | 005 | #### TABLE IV ROTATION TESTS. 10 BY 60 INCH CLARK Y WING WITH SYMMETRICAL TIP AILERONS 100 PER CENT c BY 20 PER CENT b/2 R. N.=609,000; VELOCITY=80 M. P. H.; YAW= -20° AILERONS FLOATING AND NEUTRAL C_{λ} is given for forced rotation at $\frac{p'b}{2V}$ =0.05, (+) adding rotation, (-) damping rotation | | α | 00 | 12°
| 14° | 16° | 18° | 20° | 22° | 25° | 30° | 40° | |---------------------------------|----------|---------------|--------------|--------------|------------------|--------------|----------------|------------------|---------------|---------------|----------------| | | _ | | 10 |) per cent a | ris | | | | | | | | (-) Rotation (counterclockwise) | Cs
Cs | -0.011
031 | 0.007
045 | 0.011
048 | 0.018
054 | 0.028
063 | 0.043
073 | 0.061
073 | 0. 053
062 | 0. 028
044 | 0.016
—.035 | | | · | | I | 5 per cent a | ris | | | | | | | | (-) Rotation (counterclockwise) | C). | -0.014
030 | 0.005
044 | 0.009
048 | 0.016
051 | 0.026
060 | 0.043
070 | 0. 061
—. 073 | 0. 053
063 | 0.032
013 | 0.016
—.035 | | | | | 2 | 0 per cent a | xis | | | | | | | | (-) Rotation (counterclockwise) | Ç, | -0.015
031 | 0.004
043 | 0.008
046 | 0. 015
—. 051 | 0.027
081 | 0.044
—.070 | 0. 082
074 | 0. 054
062 | 0. 032
045 | 0.015
034 | # TABLE V FORCE TESTS. 10 BY 60 INCH CLARK Y WING WITH SYMMETRICAL TIP AILERONS 100 PER CENT $\mathfrak o$ BY 20 PER CENT b/2 R. N.=609,000; VELOCITY=80 M. P. H.; YAW=0°; 15 PER CENT AXIS | | | | | 16. 11. | -005, | | висс. | | 00 m. | , | IAW= | -0,1 | | 0211 | | ~ | | | | |-------------------|-------------------|-----------------------|----------------------|-----------------------|---------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------|-------------------------|-----------------------|-----------------------|-------------------------|-----------------------|-----------------------|-------------------------|------------------------|---------------------------------------| | α | | -10° | -5° | -3° | 0° | 5° | 10° | 120 | 14° | 16° | 17° | 18° | 20° | 22° | 25° | 30° | 40° | 50° | co° | | | 84 | | | | | AII | ERON | FLOA | TING, | NEUT | RAL—CI | RCULA | R END | PLAT | ES | | | | | | CL
CD
SAF | రిధిధి | -0.215
.059
19° | 0.047
.019
11° | 0. 158
. 018
7° | 0.305
.021
1° | 0.609
.042
9° | 0.885
.075
—16° | 0.982
.092
-18° | 1.055
.109
—20° | 1. 102
. 129
-22° | 1. 080
. 146
-24° | 1.066
.162
26° | 0.989
.193
—27° | 0. 925
. 220
—29° | 0.616
.320
—22 | 0.620
.390
—28° | 0. 605
. 543
—39° | 0. 540
. 701
50° | 0. 457
. 854
57° | | | | | | | | | | RIGHT A | HERON | UP—LEF | T AILERON | DOWN | | | | | | | | | C!
C.' | 10°
10°
10° | | | | 0.632
.001
9° | | 0.030
.002
-3° | | 0.023
.003
-8° | 0.030
.003
-10° | | 0.029
.004
-12° | 0.028
.003
-14° | 0.029
.003
-16° | | 0.038
002
-20° | 0, 030
004
30° | | | | Ci'
Ca'
Sap | 20°
20°
20° | | | | .069
.001
20° | | .065
.005 | | .064
.006
3° | .063
.006
0° | | .063
.006
-1° | .061
.005
4° | .063
.004
—6° | | .080
003
-11° | 076
005
-20° | | | | Ci'
Ca'
Sap | 30°
30°
30° | | | | .084
.004
29° | | .080
.003
22° | | .080
.002
18° | .079
.002
16° | | .077
.002
14° | .069
.003
12° | .088
.004
8° | | 100
005
-1° | 011
-7° | | | | | | | | | ΔΠ | ERONS | FLOA | TING, | NEUTH | AL—T | RIANGU | LAR E | ND PL | ATES | | | | | | | CL
CD
dar | 000 | -0.258
.045
15° | -0.009
.016
7° | 0.087
.016
0° | 0.263
.020
5° | 0.580
.040
—10° | 0.863
.073
15° | 0.956
.090
—17° | 1.047
.107
—19° | 1.103
.127
-21° | 1.098
.140
-21° | 1.075
.156
-22° | 1.643
.187
—25° | 0.960
.213
-24° | 0.638
.314
-22° | 0.630
389
29° | 0. 620
. 538
-34° | 0.579
.694
—41° | 0.500
.825
-48° | | | .• | | ١. | | | | RI | OHT AILE | RON UP- | —LEFT A | ILERON D | own | | | - | | | | | | Ct'
Ca'
Sar | 10°
10°
10° | | | | 0.032
.001
9° | | 0.033
.003
-4° | | 0.033
.003
-9° | 0.033
.004
-11° | | 0.032
.003
—13° | 0.033
.003
—14° | 0.032
.002
-14° | | 0. 037
005
-20° | 0. 024
006
29° | | | | Ci'
Cu'
SAF | 20°
20°
20° | | | | .069
.002
20° | | .089
.005
7° | | .085
.005
2° | .064
.005
1° | | .062
.004
0° | .061
.004
2° | . 069
. 002
—4° | | 000
11° | 049
007
-20° | | · · · · · · · · · · · · · · · · · · · | | Ci'
Cn'
dar | 30°
30°
30° | | | | .098
.004
30° | | .090
.004
20° | | .086
.004
16° | .085
.004
14° | | .084
.003
12° | .079
.603
10° | .083
.000
8° | | 095
003
1° | .074
010
-10° | | | #### TABLE VI FORCE TESTS. 10 BY 60 INCH CLARK Y WING WITH SYMMETRICAL TIP AILERONS 100 PER CENT c BY 20 PER CENT b/2 R. N.=609,000; VELOCITY=80 M. P. H.; YAW= -20° ; 15 PER CENT AXIS | α | | -10° | −5° | -3° | 0° | 5° | · 10° | 12° | 14° | 16° | 17° | 18° | 20° | 22° | 25° | 30° | 40° | 50° | 60° | |-------------------------------|-------------------|--|---|------------------------------------|--|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|-------------------------------------|--|--------------------------------------|---------------------------------------|---|--|---|-------------------------------------|--------------------------------------| | | 8,4 | | | | | ΑΠ | ERON | S FLOA | TING, | NEUTF | RAL—CI | RCULA | R END | PLAT | ES | | | | | | CL
CD
C''
Cn'
dap | 0°
0°
0° | -0.258
.106
004
.003
10° | 0.004
.084
002
.004
5° | 0.123
.083
006
.003
2° | 0.289
.087
013
.003
2° | 0.567
.104
021
.003
7° | 0.789
.136
021
.067
-13° | 0.821
.144
008
.010
-15° | 0.885
-158
008
-011
-17° | 0.945
.176
012
.013
19° | 0.900
.183
015
.014
19° | 0. 972
. 195
022
. 014
20° | 0.985
.238
037
.016
-22° | 0.920
.273
043
.017
-23° | 0.634
.372
049
.018
-24° | 0.640
.421
032
.019
-30° | 0.638
.567
017
.022
-49° | 0.592
.724
016
.026
58° | 0.500
.850
020
.027
-66° | | | | | · | | | | RIC | HT AILE | RON UP. | LEFT A | ILERON I | южи | | | | | | <u> </u> | | | Ct'
Cn'
dap | 20°
20°
20° | | | | 0.051
.002
18° | | 0.072
.005
8° | | 0.061
004
3° | 0.057
.062
2° | | 0.059
.004
-1° | 0.074
.604
5° | 0.073
.004
—8° | | 0.046
001
-9° | 0.019
003
-12° | | | | | | | | | AII | ERON | S FLOA | TING, | NEUTR | ALT | RIANGU | LAR E | ND PL | ATE8 | | - | | | | | CL
CD
C''
Cn'
dar | 0°
0°
0° | -0,248
.057
.000
.004
.12° | 0. C22
. 035
004
. 004
. 6° | 0.118
.033
006
.005 | 0. 267
. 036
013
. 005
-2° | 0.531
.053
018
.006
-9° | 0.742
.076
012
.067
-13° | 0.822
.090
014
.008
-15° | 0.899
.104
016
.009
-17° | 0. 954
.122
024
.011
-19° | 0.978
.132
030
.012
20° | 0.988
.142
036
.013
-21° | 0.980
.177
057
.015
23° | 0. 942
.217
059
.016
-27° | 0. 690
. 333
063
. 022
-33° | 0. 632
. 384
045
. 024
38° | 0. 625
. 529
031
. 026
-47° | 0.591
.682
024
.031
56° | 0.500
.817
023
.034
-63° | | | | | | | | | BI | GHT AILE | BON UP. | -LEFT A | LLERON I | DOWN | | | | | | | | | Ct'
Cn'
8AF | 20°
20°
20° | | | | 0. 082
. 002
20° | | 0.049
.007
6° | | 0.046
.005
3° | 0. 045
. 006
0° | | 0.069
.002
-1° | 0.070
.000
-2° | 0.072
002
-3° | | 0.042
006
-4° | 0.028
007
-10° | | | # TABLE VII ROTATION TESTS. 10 BY 60 INCH CLARK Y WING WITH SYMMETRICAL TIP AILERONS 100 PER CENT c BY 20 PER CENT b/2 R. N.=609,000; VELOCITY=80 M. P. H.; YAW=0° ALLEBONS FLOATING AND NEUTRAL—15 PER CENT AXIS C_{λ} is given for forced rotation at $\frac{p'b}{2V}$ =0.05, (+) aiding rotation, (-) damping rotation; $\frac{p'b}{2V}$ values are for free rotation | | α | 0° | 12° | 14° | 16° | 18° | 19° | 20° | 21° | 22° | 23° | 24° | 25° | 30° | 40° | |---|--|----------------|---------------|----------------|---------------|----------------------|-------------------------------|-------------------------------------|-------------------------------|-------------------------------|----------|--------------------------------|-------------------------------|---------------|---------------| | | | | | | TE | RIANGULAI | R END PLA | TES | | | | | | | | | (+) Rotation (clockwise). (-) Rotation (counter-clockwise) | $ \begin{cases} p'b \\ \overline{2V} \\ C\lambda \\ p'b \\ 2\overline{V} \end{cases} $ | -0. 021
020 | -0.020
017 | -0.017
016 | -0.014
013 | -0.002
007 | 0. 209 | . 0. 015
. 205
. 025
. 219 | 0.011
.206
.007
.201 | 0.008 | 0. 207 | -0.001
.048
.008
.124 | -0.002
.045
002
.120 | -0.010
007 | -0.007
006 | | | | <u> </u> | <u> </u> | <u> </u> | i
c | TECULAR 1 | BND PLATI | ES . | <u>[</u> | ! | <u> </u> | | l <u></u> | <u> </u> | l | | (+) Rotation (clockwise)_
(-) Rotation (counter-
clockwise) | | -0.023
021 | -0.021
017 | -0. 018
014 | -0.018
008 | 0.002
.118
002 | 0.008
.205
.002
.181 |
0.014
.207
.017
.219 | 0.011
.201
.006 | 0.005
.196
.008
.156 | 0.040 | -0.001
.040
.007 | -0.003
003 | -0.012
006 | -0.011
007 | | | 2V | | | | | | | | | | | | | | | ## TABLE VIII ROTATION TESTS. 10 BY 60 INCH CLARK Y WING WITH SYMMETRICAL TIP AILERONS 100 PER CENT c BY 20 PER CENT b/2 R. N.=609,000; VELOCITY=80 M. P. H.; YAW= -20° AILERONS FLOATING AND NEUTRAL—15 PER CENT AXIS C_{λ} is given for forced rotation at $\frac{p'b}{2V}$ =0.05, (+) alding rotation, (-) damping rotation | | α | 0° | 5° | 8° | 80 | 12° | 14° | 16° | 18° | 20° | 22° | 23° | 25° | 30° | 40° | |--|----------|---------------|---------------|--------|--------|----------------|-----------------|---------------|----------------|---------------|------------------|---------------|------------------|---------------|------------------| | | | | | | TI | RIANGULAI | R END PL | ATES | | | | | | | | | (-) Rotation (counter-
clockwise)
(+) Rotation (clockwise) | GA
GA | -0.010
035 | | | | -0. 002
037 | 0.003
041 | 0. 010
047 | 0. 024
057 | 0. 041
067 | 0. 062
073 | 0. 057
069 | 0. 047
—. 063 | 0. 028
045 | 0. 017
034 | | | _ | | | | | CIRCULAR | END PLAT | TES | | | | | | | | | (-) Rotation (counter-
clockwise)
(+) Rotation (clockwise) | G, | -0.011
034 | 0, 002
025 | 0, 005 | -0.008 | -0.008
023 | 0, 006
, 024 | 0.000
027 | 0.009
—.031 | 0. 034
039 | 0. 042
—. 052 | 0. 047
049 | 0. 041
041 | 0. 014
034 | 0. 007
—. 022 | # TABLE IX FORCE TESTS. 10 BY 60 INCH CLARK Y WING WITH SYMMETRICAL TIP AILERONS 100 PER CENT c BY 20 PER CENT b/2; FLAPS UP 2° R. N.=609,000; VELOCITY=80 M. P. H.; YAW=0 $^{\circ}$ | | | [| | 1 | | | | | l | l l | | 1 | | 220 | 25° | 1 | 1 ,,,, | 1 | | |----------------------------------|-------------------|-------------------------|---------------------------|--------------------------------|--------------------------|-----------------------|------------------------|-------------------------|------------------------|------------------------|-------------------------|-------------------------|-------------------------|---------------------------|------------------------|------------------------|-------------------------|-------------------------|---------------------------------------| | <u>α</u> | | -10° | -5° | -3° | 0° | 5° | 10° | 12° | 14° | 16° | 17° | 18° | 20° | 22~ | 250 | 30° | 40° | 50° | 60° | | | 84 | | · | | | | AILER | ONS FI | OATIN | G, NEU | JTRAL- | -10 PER | CENT | AXIS | | | | | | | CL
CD
8AF | 0°
0°
0° | -0. 224
. 047
17° | 0.027
.016
.7° | 0.098
.016
1° | 0. 267
. 021
5° | 0.571
.041
10° | 0.854
.072
—15° | 0.957
.091
—18° | 1.040
.111
-18° | 1.090
.132
-18° | 1.082
.147
—19° | 1. 070
. 161
-20° | 1. 047
. 191
21° | . 0. 957
. 221
-22° | 0. 679
.323
-23° | 0.655
.400
-28° | 0. 625
. 552
-38° | 0. 575
.697
-48° | 0.500
.832
-50° | | | | | | | | | I | IGHT AII | ERON U | P—LEFT | AILEBON | DOWN | | • | | | | | | | Cť
Ca'
SAF | 10°
10°
10° | | | | 0.035
.001
9° | | 0.038
.003
4° | | 0. 039
. 004
—8° | | 0.038
.004
—11° | | 0.037
.003
—12° | 0.035
.002
-14° | 0.036
003
-17° | 0.034
005
22° | 0. 025
006
-30° | | | | Ci'
Ca'
SAF | 20°
20°
20° | | | | .070
001
20° | | . 069
. 003
7° | | .070
.004
1° | | .070
.005
—2° | | .070
.005
-4° | . 073
. 002
—5° | 068
006
8° | . 065
005
13° | . 051
008
22° | | | | C?
Ca'
SAF | 30°
30°
30° | | | | .100
.000
27° | | .085
.001
17° | | .080
.002
14° | | . 072
. 001
11° | | 066
001
10° | 075
003
8° | 086
004
0° | .087
003
-6° | .071
008
-10° | | | | | · - | | | | | AILE | RONS 1 | LOATI | NG, N | ZUTRA | L—15 PF | R OEN | T AXI | 3 | | | | | | | CL
CD | 0°
0° | -0. 193
. 044
21° | 0. 068
. 019 | 0, 106
. 018
. 016
0° | 0. 268
. 021
-5° | 0. 574
. 041
8° | 0. 874
. 073
13° | 0. 978
. 090
—12° | 1. 062
. 106 | 1. 115
. 129
15° | 1. 100
. 144
—16° | 1. 092
. 160
—17° | 1. 063
. 190
—19° | 0. 975
. 220
18° | 0.700
.328
19° | 0. 650
. 399
24° | 0. 635
. 552
—35° | 0. 590
. 702
-42° | 0. 502
. 830
52° | | OAF | | | 10 | -1° | | | | | | | | | | | | | | | | | | , 1 | | - | | 1 | | Ri | GHT AILE | RON UP | -LEFT A | ILEBON I | OWN | , | | | 1 | | | | | C!
C.'
8AF | 10°
10°
10° | | | | 0. 034
. 000
10° | | 0.037
.002
-2° | | 0.037
.002
—6° | | 0.037
.002
—8° | | 0.037
.002
—11° | 0.036
.000
—10° | 0.036
005
-13° | 0.034
005
-19° | 0.025
007
29° | | | | Ci'
Ca'
Sar | 20°
20°
20° | | | | .072
.000
21° | | .073
.002
8° | | .072
.003
3° | | . 072
. 003
0° | | . 072
. 003
-3° | .078
.000
-3° | 068
008
6° | 065
007
12° | 049
009
22° | | | | C'
C'
8AF | 30°
30°
30° | | | | . 103
. 000
30° | | 083
001
20° | | 075
001
17° | | 068
001
15° | | 061
002
13° | 072
003
12° | 077
006
5° | 081
007
-2° | 070
011
11° | | | | | | | | | | AILE | RONS I | LOATI | NG, NI | EUTRA] | Ն—20 PE | B CEN | T AXIS | ; | | | | | · · · · · · · · · · · · · · · · · · · | | C _L
C _D | 0° | 170 | 0.116
.100
.024 | 0. 230
. 051
. 023 | 0. 245
. 239
. 024 | } 0. 575
} .041 | 0.898 | 1.000 | 1. 098
. 105 | 1. 180
. 129 | 1. 120
. 143 | 1. 110
. 159 | 1. 085
. 189 | 0.985 | 0.713 | 0. 656
. 402 | 0, 645
. 562 | 0. 605
. 707 | 0. 526
. 846 | | δΔΡ | 0° | 24° | 024
.023
19°
17° | .019
15°
4° | .022
 -6° | -9° | 9° | -10° | -11° | -13° | -13° | -14° | -14° | -15° | -17° | -24° | -32° | -38° | -46° | | | | | | | | | RIC | ORT AILE | BON UP | LEFT A | LERON D | OWN | | | | | | | | | Cí'
Ca' | 10°
10°
10° | | | | 0. 035
001
11° | | 0 038
.001
-1° | | 0.036
.001
—4° | | 0.036
.001
-6° | | 0.033
.000
—7° | 0.036
002
-9° | 0. 035
006
12° | 0. 033
005
19° | 0. 024
007
28° | | | | Ci'
Ca'
dap | 20°
20°
20° | | | | .073
.001
21° | | | | | | . 070
. 003
1° | | .078
.003
-2° | . 077
000
-3° | 068
007
-5° | . 064
006
12° | .048
010
-20° | | | | Ci'
Ca'
dap | 30°
30°
30° | | | | . 104
. 001
30° | | .086
.001
21° | | .078
.000
18° | | .070
.000
16° | | .070
.000
14° | 074
003
12° | 078
008
5° | 087
007
0° | 069
011
-9° | | | # TABLE X FORCE TESTS. 10 BY 60 INCH CLARK Y WING WITH SYMMETRICAL TIP AILERONS 100 PER CENT c BY 20 PER CENT b/2; FLAPS UP 2° R. N.=609,000; VELOCITY=80 M. P. H.; YAW= -20° | α | | -10° | -5° | -3° | 0° | 5° | 10° | 12° | 14° | 16° | 17° | 18° | 20° | 22° | 25° | 30° | 40° | 50° | 60° | |-------------------------------|----------------------|---------------------------------------|--------------------------------------|------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--|---|---------------------------------------|---------------------------------------| | | δA | | · | · | ······································ | <u></u> | AILER | ons fi | COATIN | IG, NEU | JTRAL- | -10 PER | CENT | AXI8 | | · | , | · · · · · | | | CL
CD
C'
C'
SAP | రి దీధికికి | -0.217
.034
.009
.001
13° | 0.022
.018
.003
.001 | 0.108
.017
002
.001
1° | 0.249
.022
009
.001
-5° | 0.518
.041
015
.002
-10° | 0.765
.071
021
.003
-16° | 0.850
.087
023
.004
-18° | 0. 927
. 104
027
. 006
20° | 0.994
.120
035
.008
-21° | 1.007
.129
039
.010
-21° | 1. 019
. 141
045
. 011
22° | 1.045
.179
065
.012
-25° | 1.009
.219
066
.014
-25° | 0.715
.336
074
.024
-30° | 0. 652
. 386
044
. 025
35° | 0. 638
. 538
029
. 027
-45° | 0.590
.688
025
.032
55° | 0.495
.804
022
.034
-65° | | | | <u>'</u> | | | | | RIC | HT AILE | RON UP- | -LEFT A | LEBON D | OWN | | | | <u> '</u> | | | · | | Ci'
Cn'
Sap | 20°
20°
20° | | | | 0.063
003
21° | | 0.069
608
7° | | 0.072
014
2° | | 0,066
021
0° | | 0. 662
002
0° | 0.060
004
-2° | 0.041
007
-3° | 0.039
008
-5° | 0.028
007
-14° | | | | | | | | | | AILE | RONS I | LOAT | ING, N | UTRA | L—15 PE | R OEN | T AXIS | | | | | | | | CL
CD
Ct'
Cn'
SAP | 0°
0°
0° | -0.204
.034
.010
.000
16° | 0.041
.017
.004
.001
.8° | 0.113
.018
002
.001 | 0.255
.021
009
.001
-4° | 0.519
.040
015
.002
-10° | 0.777
.070
019
.003
15° | 0.863
.684
022
.005
-17° | 0.944
.100
026
.006
-18° | 1.008
.118
034
.008
-20° | 1.025
.125
039
.010
-21° | 1.039
.139
047
.010
-22° | 1.050
.177
066
.013
-23° | 1.009
.219
067
.015
-25° | 0.722
.338
075
.023
28° | 0.650
.389
044
.024
-33° |
0.638
.533
030
.026
-46° | 0.602
.691
026
.031
55° | 0. 497
.807
026
.033
-62° | | | | | | | | | RI | GHT AIL | eron ve | —LEFT A | ILERON I | DOWN | | | | | | | | | Ci'
Ca'
8AP | 20°
20°
20° | | | | 0.065
005
25° | | 0.069
004
12° | | 0. 659
-003
5° | | 0.062
003
4° |
 | 0.062
004
3° | 0.056
006
1° | 0.039
009
0° | 0.034
008
-2° | 0. 027
009
9° | | | | | | | | | | AIL | erons | FLOAT | ring, N | EUTR. | L—20 P | ER CE | IXA TV | 8 | | | | | | | CL
CD
Ci'
C''
8AF | 0°
0°
0°
0° | -0.200
.033
.010
.003
17° | 0.050
.018
.005
.001
10° | 0.118
.016
001
.001
2° | 0, 257
.021
009
.001
-3° | 0.524
.039
013
.002
-9° | 0.779
.069
018
.004
-13° | 0.879
.082
021
.065
-14° | 0. 952
. 097
025
. 006
-16° | 1.005
.116
033
.008
-18° | 1.033
.124
037
.010
18° | 1.050
.138
046
.010
-19° | 1.054
.173
060
.012
-20° | 1.017
.217
066
.015
-22° | 0.719
.336
076
.024
-27° | 0. 655
.390
046
.025
-33° | 0, 626
.537
030
.026
-45° | 0.591
.692
- 026
.031
55° | 0.503
.812
027
.035
61° | | | | | | | | | RI | GHT AIL | eron ui | -LEFT A | ILERON I | DOMM | | | | | | | | | Ct'
Cn'
SAP | 20°
20°
20° | | | | 0.065
.003
25° | | | | 0. 087
001
4° | | 0.062
001
2° | | 0.062
004
3° | 0.056
006
1° | 0.040
010
4° | 0.032
008
0° | 0.023
008
-10° | | | #### TABLE XI ROTATION TESTS. 10 BY 60 INCH CLARK Y WING WITH SYMMETRICAL TIP AILERONS 100 PER CENT c BY 20 PER CENT b/2; FLAPS UP 2° R. N.=609,000; VELOCITY=80 M. P. H.; YAW=0° # AILERONS FLOATING AND NEUTRAL C_{λ} is given for forced rotation at $\frac{p'b}{2V}$ =0.05, (+) aiding rotation, (-) damping rotation; $\frac{p'b}{2V}$ values are for free autorotation | | α | 0° | 12° | 14° | 16° | 18° | 19° | 20° | 21° | 22° | 23° | 24° | 25° | 26° | 27° | 28° | 30° | 40° | |----------------------------------|---|---------------|---------|------------|------------|---------|--------|-----------|--------|-----------------|--------|--------|---------|----------|--------|--------|--------|--------------| | | | | | | | | 10 pe | cent ax | is | | | | | | | | | | | (+) Rotation (clock-
wise). | $\left\{\begin{array}{l}C\lambda\\p'b\\\frac{p'b}{2\ V}\right.$ | -0.022 | -0. 019 | -0.017 | -0.014 | -0.002 | 0.108 | 0.014 | 0. 140 | 0. 018
. 149 | 0. 165 | | -0. 013 | | | | -0.010 | -0.009 | | (-) Rotation (counterclockwise). | | 020 | 017 | 016 | —. 013
 | 008
 | | 029 | . 157 | .004 | | | . 005 | 0.068 | 0.060 | 0. 032 | 004 | 00 6 | | | | 1 | ı | | <u> </u> | 1 | 15 Dei | cent ax | is | | · | | | | | | | | | (+) Rotation (clock-
wise). | Cx
p'b
2 V | -0.022 | -0.020 | -0.018 | -0. 013 | -0.001 | 0.115 | 0.014 | 0, 140 | 0.018 | 0. 174 | | -0.013 | | | | -0.009 | -0.007 | | (-) Rotation (counterclockwise). | CA
p'b
2 V | 019 | 017 | 016 | 018 | 007 | | 029 | . 078 | .003 | .073 | 0.073 | .004 | | 0. 059 | 0.030 | →. 004 | 00 | | | | . | | | | ļ | 20 pe | r cent az | is | | | · | | <u>'</u> | · | | | | | (+) Rotation (clock-
wise). | $\begin{cases} \frac{C_{\lambda}}{p'b} \\ \frac{p'b}{2V} \end{cases}$ | -0.022 | -0.020 | -0.018 | -0.014 | 0.000 | 0. 113 | 0.015 | 0.140 | 0.020 | 0. 180 | | -0.010 | | | | -0.008 | -0.00 | | (-) Rotation (counterclockwise). | 2 V
C ₁
p'b
2 V | 021
 | 017 | 016 | 014 | 006 | | 030 | . 038 | .000 | . 064 | 0. 071 | . 003 | 0.060 | 0, 034 | 0. 035 | 004 | 00 | #### TABLE XII ROTATION TESTS. 10 BY 60 INCH CLARK Y WING WITH SYMMETRICAL TIP AILERONS 100 PER CENT $_{\it o}$ BY 20 PER CENT $_{\it b/2}$; FLAPS UP 2° R. N.=609,000; VELOCITY=80 M. P. H.; YAW= -20° AILERONS FLOATING AND NEUTRAL C_{λ} is given for forced rotation at $\frac{p'b}{2V}$ =0.05, (+) aiding rotation, (-) damping rotation | | α | 0° | 12° | 14° | 16° | 18° | 20° | 22° | 25° | 30° | 40° | |---|----------|---------------|--------------|--------------|------------------|--------------|------------------|---------------|------------------|------------------|--------------| | | | | | 10 per cent | axis | | | | | | | | (-) Rotation (counterclockwise) | C'Y | 0.014
029 | 0.007
043 | 0.011
046 | 0.018
053 | 0.028
062 | 0.045
071 | 0.064
068 | 0. 052
—. 060 | 0.029
—.043 | 0.017
034 | | | | | | 15 per cent | axis | | | | | | | | (-) Rotation (counterclockwise)(+) Rotation (clockwise) | C)
C) | -0.016
028 | 0.005
043 | 0.010
048 | 0. 017
—. 051 | 0.028
061 | 0. 045
—. 070 | 0.061
068 | 0. 053
—. 061 | 0. 030
—. 044 | 0.018
034 | | | | | : | 20 per cent | axis | | | | | | | | (—) Rotation (counterclockwise) | Cγ | -0.017
031 | 0.003
042 | 0.009
045 | 0.013
050 | 0.027
060 | 0. 046
—. 069 | 0. 065
068 | 0. 053
—. 061 | 0.031
044 | 0.017
033 | ## TABLE XIII FORCE TESTS. 10 BY 60 INCH CLARK Y WING WITH SYMMETRICAL TIP AILERONS 100 PER CENT c BY 20 PER CENT b/2; FLAPS UP 2°, TRIANGULAR END PLATES R. N.=609,000; VELOCITY=80 M. P. H.; YAW=0° | - | | | _ | | | | -005,0 | 00, YL | DOOL. | 11-0 | , 191. I | . н.; х | A 11 — | ٠ | | | | | | |--|-----------------------------------|-------------------------|------------------------|--------------------------|---|---------------------------------------|-------------------------------------|-------------------------|--------------------------------------|-------------------------|---|-----------------------|-------------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------|------------------------| | α | | -10° | 5° | -8° | 0° | 5° | 10° | 12° | 14° | 16° | 17° | 18° | 20° | 220 | 25° | 30° | 40° | 50° | 60° | | | 84 | | | | | | AILER | ONS FL | OATIN | G, NEU | TRAL- | -10 PER | CENT | AXIS | | | | | | | CL
CD
8AF | 0°
0°
0° | -0. 236
. 044
16° | 0.037
-018
9° | 0. 145
. 017
4° | 0.310
.021
2° | 0.611
.041
-8° | 0.884
.076
—15° | 0. 978
. 094
-17° | 1.059
.111
-19° | 1. 095
. 132
21° | 1.084
.149
-22° | 1.068
.164
-23° | 1. 040
. 194
—25° | 0. 944
. 222
-26° | 0.777
.317
—26° | 0.662
.408
30° | 0. 618
. 546
-35° | 0. 572
. 697
—43° | 0. 493
. 837
53° | | | | | ``` | | | | RI | GHT AILE | RON UP | -LEFT A | LEBON D | own | | : | | | | | | | Ci'
Ca'
Sar
Ci' | 10°
10°
10°
20° | | | | 0.032
.001
10°
.067 | | 0. 033
. 003
5°
. 065 | | 0.031
.003
9°
.062 | | 0.031
.003
11° | | 0.031
.003
-13° | 0.028
.003
-15°
.063 | 0. 024
. 002
15° | 0. 041
007
-20° | 0. 034
006
25° | | | | Ci'
Ca'
SAP
Ci'
Ca'
SAP | තුතුතු කුතුකු
කුතුතු කුතුකු | | | | .000
20°
.096
.001
30° | | .004
6°
.088
.002
20° | | .004
2°
.083
.003
16° | | .004
-1°
.082
.002 | | .069
.003
-4°
.087
.002 | .001
5°
.080
001
9° | 005
8°
095
002
8° | 009
-13°
.098
008
-2° | 008
-21°
074
009
11° | | | | - | | | | <u></u> | l | ATTER | ONER | LOATE | NG NE | UTRAI | 15 DP | D OFN | T A VIO | | | | ! | l | | | | 1 | | | | ! | · · · · · · · · · · · · · · · · · · · | | · · | | 1 | | | | | | | | | <u> </u> | | Op
Op | 0°
0° | -0. 217
. 053
18° | 0. 062
. 019
13° | 0. 166
. 017
8° | 0.313
.021
-1° | 0.618
.040
6° | 0.905
.073
—11° | 1.002
.089
-13° | 1. 083
. 109
—15° | 1. 125
. 130
-17° | 1. 114
. 144
-18° | 1.098
.160
—19° | 1. 055
. 190
21° | 0.968
.218
-21° | 0.690
.323
—20° | 0. 640
. 392
-27° | 0.627
.550
-33° | 0. 585
. 704
—39° | 0. 500
.837
-47° | | • | | | | | | | RI | GHT AILE | RON UP- | -LEFT A | LEBON D | own | | | | | | | | | Cr'
Cr'
84r
Cr' | 10°
10°
10°
20° | | | | 0.033
.000
11°
.069 | | 0.034
.001
-3° | | 0.032
.002
-7°
.062 | | 0. 032
. 003
10°
. 060 | | 0.019
.002
-12° | 0.031
.001
13° | 0.027
004
-14°
.065
006 | 0. 038
006
-19°
. 072 | 0. 027
007
-26°
. 050 | | | | Ci'
Ci'
SAP
Ci'
Ci'
SAP | 20°
30°
30°
30° | | | | .069
.000
20°
.098
.002
.29° | | .067
.003
.7°
.087
.002 | | .062
.003
.080
.002
.15° | | .060
.003
0°
.077
.002
13° | | .059
.002
-3°
.072
.000 | .001
-5°
.082
003
10° | 006
8°
005
005 | 008
-11°
. 097
010
. 0° | 009
-20°
. 074
011
-10° | | | | | • | | <u>'</u> | | | AILE | RONS I | LOATI | NG, NI | UTRA | -20 PE | R CEN | T AXI | 3 | | | | | | | CL | 0° | -0. 197 | 0. 100 | { 0. 225
} . 090 | 0.396 | 0. 675 | 0.948 | L 045 | 1. 123 | 1. 158 | L 150 | 1. 140 | 1.098 | 0. 999 | 0. 703 | 0. 643 | 0. 638 | 0.602 | 0. 520 | | C _D | 0° | . 046
21° | .024
16° | 023
018
13°
-2° | } .024
} 9° | .042
-1° | . 075
6° | .090
—8° | . 109
—10° | .130
-12° | . 145
—13° | . 160
—13° | . 191
—15° | . 222
—16° | .325
-17° | .400
26° | . 552
-30° | .712
-35° | .843
44° | | | | | | | | i | PI/ | OHT AILE | RON UP- | -LEFT AI | LERON D | ows | ! | | | ! | <u> </u> | | | | C''
C''
847 | 10°
10°
10° | | | | 0.032
.000
13°
.070 | | 0. 033
.
001
0° | | 0.033
.001
-4° | | 0.030
.001
7° | | 0. 023
. 001
-11° | 0.030
.000
-12° | 0.031
005
-14° | 0.036
006
18° | 0. 025
006
-25° | | | | Ci'
Ci'
Sar
Ci' | କ୍ଷ୍ଟ
କ୍ଷ୍ଟ
କ୍ଷ୍ଟ
କ୍ଷ୍ୟୁ | | | | .000
21°
.098 | | .089 | | .083 | | . 058
. 003
. 079 | | .061
.002
-2°
.074
.003 | .068
.002
-4° | 006
5° | 008
-10°
.094 | 009
-19° | | | | Ci'
Ca'
Sar | 30° | | | | .006
28° | | .004
18° | | .005
16° | | . 005
13° | | .003
11° | .000
10° | 004
4° | 011
1° | 013
-8° | | | # TABLE XIV FORCE TESTS. 10 BY 60 INCH CLARK Y WING WITH SYMMETRICAL TIP AILERONS 100 PER CENT c BY 20 PER CENT b/2; FLAPS UP 2°, TRIANGULAR END PLATES R. N.=609,000; VELOCITY=80 M. P. H.; YAW= -20° | α | | -10° | -5° | -3° | 0° | 5° | 10° | 12° | 14° | 16° | 17° | 18° | 20° | 22° | 25° | 30° | 40° | 50° | 60° | |-------------------------------|--|---|-------------------------------------|------------------------------------|--|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---|--------------------------------------|---|---| | | 84 | | | <u>.</u> | ·' | ! | AILER | ONS F | LOATIN | IG NEU | TRAL | -10 PER | CENT | AXI8 | ' | | • | <u></u> | | | CL
CD
Cl'
C''
8AF | 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0 | -0. 238
. 056
001
. 004
12° | 0.033
.037
003
.004
7° | 0.133
.036
008
.005
2° | 0. 284
. 037
012
. 005
-2° | 0.536
.053
018
.008
-9° | 0.744
.077
012
.007
-13° | 0.829
.091
015
.008
15° | 0.899
.109
019
.010
-17° | 0.950
.126
028
.012
-19° | 0. 970
. 136
033
. 013
20° | 0.973
.147
040
.014
-22° | 0.848
.153
059
.013
25° | 0.765
.127
070
.016
-27° | C. 748
.328
070
.017
-33° | 0. 622
.382
038
.020
-37° | 0.618
.530
029
.025
47° | 0.578
.680
023
.029
-57° | 0. 496
. 807
0.22
. 032
64° | | | <u>-</u> 7 | | | | _ | | | RIGHT A | ILEBON | UP—LEFT | AILERO! | 4 DOWN | | | | | | | | | Ct'
Cn'
SAP | 20°
20°
20° | | | | 0.056
.000
20° | | 0.045
005
5° | | 0.056
.004
1° | | 0.047
.005
-2° | | 0.075
.002
—4° | 0.074
001
-3° | 0.062
.003
-4° | 0.043
005
-6° | 0.028
008
-12° | | | | | ····· | | | | | AILE | RONS | FLOAT | ING, N | EUTRA | L—15 PE | R CEN | T AXI | 3 | | | | | | | CL
CD
Ci'
Cn'
8AP | 0°
0°
0°
0° | -0.245
.056
0
001 | 0.037
.035
003
.004
.7° | 0.138
.035
005
.005 | 0.284
.036
011
.005
-1° | 0.545
.053
017
.006
-7° | 0.760
.075
010
.007
-11° | 0.848
.089
013
.008
-13° | 0.918
.016
017
.009
-15° | 0.965
.123
025
.012
-17° | 0.984
.132
030
.013
-18° | 0.996
.143
037
.014
19° | 0.852
.249
063
.016
-22° | 0.745
.289
061
.017
-25° | .690
.334
076
.022
-32° | 0.627
.385
044
.022
-37° | 0.622
.532
030
.025
-47° | 0. 583
. 677
024
. 030
-56° | 0.496
.812
024
.033
-62° | | | | | | | | | R | IGHT AII | EBON U | P—LEFT | AILERON | DOWN | | | | | | | | | Ct'
Cn'
Sar | 20°
20°
20° | | | | 0.060
.000
21° | | 0.046
.006
6° | | 0.044
.004
2° | | 0.043
.005
2° | | .071
.000
-2° | 0.071
004
-2° | 0.051
003
-2° | 0.041
005
5° | 0.027
007
9° | | | | | _ | · | | • | | AILEI | RONS F | LOATI | NG, NE | UTRAI | -20 PE | R CEN | RIXA 1 | | | | | | | | CL
CD
Cl'
Ca'
8AF | 0°
0°
0°
0° | -0. 245
.057
001
.002
11° | 0.048
.038
002
.003
8° | 0.156
.038
003
.004
6° | 0. 289
.038
010
.005
3° | 0.552
.054
015
.006
6° | 0.803
.081
016
.007
16° | 0.864
.090
008
.007
-11° | 0.938
.104
012
.009
-12° | 0.990
.120
020
.011
-14° | 1.018
.129
024
.012
14° | 1.014
.142
032
.014
-15° | 1.006
.175
048
.015
-18° | 0.963
.219
052
.017
-19° | 0. 672
.335
080
.023
-32° | 0. 630
. 390
048
. 024
-37° | 0. 618
.534
030
.026
48° | 0.585
.688
024
.031
57° | 0.560
.815
024
.033
-62° | | | | | | | | | F | UGHT AD | LERON U | P—LEFT | AILERON | DOWN | | | | | | | | | Ci'
C''
8AP | 20°
20°
20° | | | | 0. 058
005
24° | | 0. 050
. 005
6° | | 0.038
.005
2° | | 0. 058
. 003
2° | | 0.059
.000
-2° | 0.060
005
-2° | 0.054
004
-2° | 0.038
006
-5° | 0.025
008
-10° | | | ## TABLE XV ROTATION TESTS. 10 BY 60 INCH CLARK Y WING WITH SYMMETRICAL TIP AILERONS 100 PER CENT c BY 20 PER CENT b/2; WITH FLAPS UP 2°, TRIANGULAR END PLATES R. N.=609,000; VELOCITY=80 M. P. H.; YAW=0 $^{\circ}$ AILERONS FLOATING AND NEUTRAL C_{λ} is given for forced rotation at $\frac{p'b}{2V}$ =0.05, (+) aiding rotation, (-) damping rotation; $\frac{p'b}{2V}$ values are for free autorotation | | | | | 3 | , | | | | | | ** | | | | | | | | |---------------------------------------|-----------------|----------|--------|------------|----------------|-------------|--------|-----------------|--------|---------------|--------|-------|--------|-------|--------|--------|--------|------------| | | α | 0° | 12° | 14° | 16° | 18° | 19° | 20° | 21° | 220 | 23° | 24° | 25° | 26° | 27° | 28° | 30° | 40° | | | | | | | | | 10 per | cent axi | 3 | | - | | | | | | | | | (+) Rotation (clock- | C) p'6 V | -0.021 | -0.018 | -0. 017 | -0. 013 | 0.000 | | 0.018 | 0.100 | 0.022 | | | -0.008 | | | | -0.009 | -0.007 | | wise). | 2 V | | | | | .099 | 0.138 | . 150 | 0.196 | . 216 | 0.234 | | | | | | 007 | | | (—) Rotation (counter-
clockwise). | (C) pb (F) | 019 | 018 | —, 016
 | —. 014
 | 0 07 | | 031
. 234 | 206 | . 163 | .118 | 0.114 | .008 | 0.096 | | 0.39 | 007 | —. 007
 | | | | | | | | | 15 per | cent axi | 3 | | | | | | | | | | | (+) Rotation (clock-
wise). | Cy
p'b
2V | -0.021 | -0.018 | -0. 017 | -0. 013 | 0.000 | 0.133 | 0. 018
. 159 | 0. 186 | 0.020
.225 | 0. 230 | | -0.010 | | | | -0.009 | -0.00 | | • | (B | 020 | 017 | 015 | 013 | 008 | | 031 | | .006 | | | .007 | | | | 005 | 00 | | (—) Rotation (counter-
clockwise). | C3. p'b | | | | | | | . 235 | . 208 | . 159 | .109 | 0.111 | | 0.093 | | 0.036 | | | | | | <u>'</u> | | <u> </u> | | • | 20 per | cent axi | 3 | | | | | | | | | | | (+) Rotation (clock-
wise). | Ci pro | -0.023 | -0.018 | -0.017 | -0.018 | 0.002 | 0, 139 | 0.016
.154 | 0. 175 | 0. 019 | | | -0.011 | | | | -0.008 | -0.00 | | • | l á₹r | 021 | 019 | , 017 | 012 | 008 | | 030 | | . 005 | | | . 006 | | | | 004 | 00 | | (→) Rotation (counter-
clockwile). | | | | | | | | | . 201 | . 109 | 0.102 | | .096 | 0.081 | 0. 077 | 0. 035 | | | #### TABLE XVI ROTATION TESTS. 10 BY 60 INCH CLARK Y WING WITH SYMMETRICAL TIP AILERONS 100 PER CENT c BY 20 PER CENT b/2; FLAPS UP 2°, TRIANGULAR END PLATES R. N.=609,000; VELOCITY=80 M. P. H.; YAW= -20° # AILERONS FLOATING AND NEUTRAL C_{λ} is given for forced rotation at $\frac{p'b}{2V}$ =0.05, (+) aiding rotation, (-) damping rotation | | α | 0° | 12° | 14° | 16° | 18° | 20° | 22° | 25° | 30° | 40° | |---------------------------------|----------------------------------|---------------|---------------|---------------|------------------|------------------|------------------|------------------|---------------|---------------|------------------| | | | | | 10 per cent : | axis | | | | | | | | (-) Rotation (counterclockwise) | C _λ
C _λ | -0.011
034 | -0.001
037 | 0.004
041 | 0.012
046 | 0, 026
—, 056 | 0.042
064 | 0, 057
—, 073 | 0.046
064 | 0.028
045 | 0.018
036 | | | | | | 15 per cent : | aris | | | | | | | | (-) Rotation (counterclockwise) | C.
C. | -0.012
033 | -0.005
034 | 0.000
038 | 0, 007
—, 043 | 0, 021
-, 052 | 0.037
—.061 | 0.061
069 | 0.046
062 | 0, 027
045 | 0, 017
—, 035 | | | | | | 20 per cent s | axis | | | | | | | | (-) Rotation (counterclockwise) | G
G | -0.015
031 | -0.006
030 | -0.004
033 | 0.003
—.037 | 0.017
046 | 0. 033
—. 056 | 0. 056
067 | 0. 057
066 | 0.032
048 | 0.016
034 | # TABLE XVII FORCE TESTS. 10 BY 60 INCH CLARK Y WING WITH CLARK Y TIP AILERONS 100 PER CENT $\mathfrak o$ BY 20 PER CENT b/2; FLAPS UP 11° | | | | | | F | e.N.= | 609,00 | 0; VE | LOCI | ΓY= 8 | 0 M. F | ч. н.; ч | ZAW= | =0° | | | | | | |--|--|-----------------------|------------------------|----------------------|---|-----------------------|--|-----------------------|---|-----------------------|--|-------------------------|--|--
---|--|--|------------------------|-----------------------| | α | | -10° | -5° | -3° | 0° | 5° | 10° | 12° | 14° | . 16° | 17° | 18° | 20° | 22° | . 25° | 30° | 40° | 50° | 60° | | | 84 | | | <u> </u> | • | | AILER | ONS FI | OATIN | G, NEU | TRAL | -10 PER | CENT | AXIS | | | | | | | CL
CD
SAF | 0°
0° | -0.223
.044
18° | 0.025
.017
8° | 0.115
.017
2° | 0.274
.022
-6° | 0.572
.042
-11° | 0.859
.075
16° | 0.970
.091
—16° | 1.052
.111
-17° | 1.093
.131
-19° | 1.091
.146
-20° | 1.076
.162
-20° | 1.044
.192
-21° | 0.950
.222
-22° | 0. 688
. 326
-22° | 0. 650
. 402
-28° | 0. 631
. 555
-37° | 0. 582
. 704
46° | 0.488
.830
-54° | | | | | | | | | RI | GHT AILE | BON UP | —LEFT A | LERON I | NW. | • | | | | | | | | C'
C''
SAP
C''
SAP
C''
C''
SAP | 10°
10°
20°
20°
20°
30°
30° | | | | 0.034
.001
.9°
.070
.001
.21°
.099
003
.34° | | 0.037
.003
-4°
.077
.005
8°
.102
.004 | | 0.039
.004
-7°
.077
.007
4°
.103
.006
18° | | 0.037
.004
-10°
.075
.008
1°
.097
.008
15° | | 0.036
.003
-11°
.075
.007
-2°
.089
.009 | 0.034
.002
-13°
.074
.005
-4°
.086
.008 | 0.035
003
-16°
.077
001
-7°
.101
001 | 0.038
006
-19°
.065
005
-12°
.087
003 | 0.025
007
-29°
.045
007
-21°
.067
006
-9° | | | | | | | | <u> </u> | | AILE | RONS F | LOATI | NG, NI | UTRAI | 15 PE | R CEN | T AXIS | 3 | | | , | | <u>' </u> | | CL
CD
SAF | 0°
0°
0° | -0.203
.044
20° | 0.063
.019
10° | 0.096
.018
-2° | 0. 261
. 023
- 6° | 0.574
.044
-11° | 0.872
.077
15° | 0.978
.092
-15° | 1.062
.109
—16° | 1.118
.131
-18° | 1. 099
. 148
—19° | 1. 085
. 162
-19° | 1.055
.194
-20° | 0, 973
. 222
20° | 0.696
.330
—21° | 0. 651
. 402
-28° | 0. 635
. 559
—36° | 0.587
.710
-43° | 0.503
.841
-51° | | | | | | | | | RIGHT | r AILERO | N UP—L | EFT AILE | RON DOV | YN | | | | | | | | | Cl'
Cn'
Sap
Cl'
Sap
Cl'
Sap | 10°
10°
10°
20°
20°
30°
30° | | | | 0.035
.000
9°
.071
.000
22°
.100
003
33° | | 0.037
.002
-4°
.076
.003
10°
.085 | | 0.038
.003
-7°
.077
.005
.5°
.083
.002 | | 0.038
.003
-9°
.075
.006
2°
.081
.003
16° | | 0.037
.002
-11°
.075
.006
0°
.073
.003
.13° | 0.038
.000
-12°
.073
.004
-2°
{ .059
.063
.002
.11° | 0. 638
003
-14°
. 078
602
6°
} . 092
063
9° | 0.037
006
20°
.065
606
11°
.088
001
1° | 0.025
007
-29°
.047
008
-20°
.068
006
-10° | | | | | | | | | | AILE | RONS I | LOATI | NG, NI | UTRAI | 20 PE | R CEN | T AXIS | 3 | | | | | | | CL
CD
SAF | 0°
0°
0° | -0.173
.046
22° | 0. 109
. 024
16° | 0.222
.022
14° | 0.237
.023
—9° | 0.564
.042
11° | 0.883
.074
-13° | 1.003
.089
-14° | 1.008
.106
-15° | 1.129
.131
-16° | 1. 122
. 145
-17° | 1.112
.102
-18° | 1.086
.191
—18° | 1.003
.224
-18° | 0.712
.337
-20° | 0. 657
-407
-28° | 0.644
.560
-38° | 0.608
.711
-40° | 0.514
.842
-49° | | | | | | | | | RIC | HT AILE | BON UP- | -LEFT AI | LERON D | own | | | | | | | <u> </u> | | Cí
Ci'
Sap
Cí'
Ci'
Sap
Cí'
Ci'
Sap | 10°
10°
10°
20°
20°
30°
30°
30° | | | | 0.034
.000
9°
.071
001
22°
.102
003
32° | | 0.036
.002
-3°
.075
.002
10°
.085
.001
21° | | 0.037
.002
-6°
.074
.004
.5°
.683
.002 | | 0.037
.001
8°
.075
.004
3°
.080
.080 | | 0.038
.000
-10°
.075
.004
.0°
.072
.001
.12° | 0.036
002
-10°
.069
.002
-1°
.057
.002 | 0.035
005
-14°
.078
002
-6°
.091
004 | 0.035
006
-20°
.064
006
-11°
.086
001
2° | 0.024
007
-29°
.047
608
-21°
.068
007
-10° | | | ## TABLE XVIII FORCE TESTS. 10 BY 60 INCH CLARK Y WING WITH CLARK Y TIP AILERONS 100 PER CENT c BY 20 PER CENT b/2; FLAPS UP 11° R. N.=609,000; VELOCITY=80 M. P. H.; YAW= -20° | - | | —10° | -5° | -3° | 0° | 5° | 10° | 12° | 14° | 16° | 17° | 18° | 20° | 22° | 25° | 30° | 40° | 50° | 60° | |-------------------------------|--|---|--|---|--|---------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|---|---|---|---|---------------------------------------|--|---|---|--------------------------------------| | | 8,1 | | | | | Al | LERO | NS FLO | ATING | , NEUI | RAL-1 | 0 PER | CENT . | XIS | | | | | | | CL
CD
Cl'
Cn'
SAP | °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°° | -0. 209
. 035
. 010
. 001
. 19° | 0. 034
. 021
. 004
. 002
11° | 0. 128
.019
000
.001
.7° | 0. 254
. 022
007
. 002
-2° | 0. 512
. 041
016
. 002
9° | 0.761
.071
022
.004
-14° | 0.858
.086
025
.005
16° | 0.920
.100
029
.006
-17° | 0.984
.118
036
.008
-19° | 1.003
.127
040
.010
-19° | 1. 016
. 137
046
. 010
-20° | 1. 038
. 176
060
. 012
23° | 1. 032
. 218
086
. 015
24° | 0. 751
.340
065
.024
-27° | 0. 670
. 406
046
. 026
33° | 0.639
.545
031
.026
-44° | 0. 592
. 697
026
. 031
46° | 0.503
.817
025
.034
53° | | | , | | | | | | RIC | HT AILE | RON UP | LEFT AII | ERON DO | WN | | | | | | | | | Cť
Cs'
SAP | 20°
20°
20° | | | | 0.069
001
22° | | 0. 071
. 000
9° | | 0. 071
. 000
5° | | 0.071
001
8° | | 0.065
002
1° | 0.060
002
1° | 0.043
005
0° | 0.038
006
5° | 0.028
005
12° | | | | | | | | | | AILEI | RONS E | LOATI | NG, NE | UTRA | .—15 PE | R CEN | T AXIS | | | | | | | | CL
CD
Ci'
Cn'
8AP | 0°
0°
0° | -0. 204
. 037
. 011
. 001
. 19° | 0.049
.022
.006
.001
.13° | 0. 152
. 021
. 003
. 002
9° | 0. 260
. 022
007
. 001
1° | 0. 518
. 041
014
. 002
8° | 0.765
.070
021
.004
-13° | 0.864
.086
024
.005
15° | 0. 945
. 099
026
. 006
16° | 0.988
.117
034
.008
-17° | 1, 020
. 125
039
. 010
-18° | 1. 034
. 138
045
. 011
19° | 1. 047
. 175
058
. 012
21° | 1. 045
. 218
086
. 015
-23° | 0.756
.340
065
.025
28° | 0.668
.408
047
.026
-33° | 0.664
.547
030
.026
-45° | 0. 606
. 704
027
. 030
55° | 0.505
.830
028
.035
-61° | | | | | | <u>'</u> | | | R | IGHT AIL | ERON UP | —LEFT A | LEBON D | OWN | | | | | | • | | | Ct'
Cn'
8AF | മും
ജം
ജം | | | | 0. 070
003
23° | | 0. 071
001
10° | | 0. 069
001
6° | | 0.070
003
5° | | 0. 065
003
3° | 0. 059
—. 004
3° | 0. 044
006
3° | 0, 036
006
2° | 0.027
007
11° | | | | | | | | | | AILE | RONS | FLOAT | ING, N | EUTRA | L—20 PI | ER CEN | T AXI | 3 | | | | | | | CL
CD
Cl'
Cn'
8AP | 0°
0°
0° | -0. 199
. 036
. 009
. 001
18° | 0. 050
. 022
. 003
. 002
12° | 0. 147
. 021
. 000
. 001
. 8° | 0. 282
. 022
006
. 001
1° | 0.506
.040
015
.002
-9° | 0.787
.070
020
.004
13° | 0.882
.084
029
.005
-14° | 0. 953
. 099
027
. 007
15° | 1.011
.116
034
.008
-17° | 1. 022
. 124
038
. 010
-18° | 1. 043
. 188
046
. 011
-19° | 1. 054
. 171
060
. 012
-21° | 1.047
.216
087
.015
-23° | 0.752
.343
065
.024
-28° | 0.680
.410
049
.027
-35° | 0. 640
. 552
028
. 026
-47° | 0. 595
. 712
025
. 030
-58° | 0.503
.830
028
.034
-64° | | | | | | | | | R | IGHT AIL1 | ERON UP- | —Left A | LEBON D | KW C | | | | | | | | | Ct'
Cn'
8AP | 20°
20°
20° | | | | 0. 070
005
23° | | 0. 070
001
10° | | 0. 070
003
6° | | 0.069
004
4° | | 0.065
005
4° | 0. 059
005
2° | 0. 041
007
2° | 0.029
006
-3° | 0. 024
008
11° | | | # TABLE XIX ROTATION TESTS. 10 BY 60 INCH CLARK Y WING WITH CLARK Y TIP AILERONS 100 PER CENT c BY 20 PER CENT b/2; FLAPS UP 11° R. N.=609,000; VELOCITY=80 M. P. H.; YAW=0° AILERONS FLOATING AND NEUTRAL Chisgiven for forced rotation at $\frac{p'b}{\sqrt{v}} = 0.05$, (+) aiding rotation, (-) damping rotation; $\frac{p'b}{\sqrt{v}}$ values are for free autorotation | | | | i iui iui co | | 2 V | | , | | | | | -, 2 V | | | | | | | | |--|--|--------|---------------|----------------|----------------|--------|--------|-----------------|---------|----------------|--------|--------
---------|-------|--------|-------|--------|---------|--------| | | α | 0° | 12° | 14° | 16° | 18° | 19° | 20° | 21° | 22° | 23° | 24° | 25° | .26° | 27° | 28° | 29° | 30° | 40° | | • | | | | | | | | 10 per | cent ax | 5 | | | | | | | | | | | (十) Rotation (clockwise). | C _λ
p'b
2 V | -0.023 | -0.020 | -0.018 | —0. 015 | -0.026 | 0. 118 | 0.014 | 0, 139 | 0.017
.152 | 0. 168 | | -0. 013 | | | | | -0.009 | -0.008 | | (-) Rotation (counter-clockwise). | C_{λ} $\frac{C_{\lambda}}{p'b}$ $\frac{p'b}{2V}$ | 020 | —. 017
 | 017 | 01 4 | 007 | 1 | 028 | . 167 | . 003
. 062 | . 073 | 0. 074 | . 005 | 0.068 | 0. 055 | 0.036 | | 002
 | 005 | | | | | | | | | | 15 per | cent ax | 5 | | | | | | | | | | | (+) Rotation (clockwise). | Ch
p'b
2V | -0.024 | -0.020 | -0. 018 | -0. 016 | -0.002 | 0.128 | 0. 020
. 149 | | 0.027 | | | -0, 014 | | | | | -0.000 | -0.008 | | (-) Rotation
(counter-
clockwise). | 2 V
C ₁
2 V
2 V | 020 | —. 015 | -, 014 | 013 | 007 | | —. 027
 | | .004 | 0. 078 | | .006 | | 0, 067 | | 0.034 | 002 | 005 | | · | •,• | | | | | | | 20 per | cent ax | İs | | | | | | | | | | | (+) Rotation (clockwise). | Cx
p'b
2 V | -0.023 | -0.022 | -0. 016 | -0. 014 | 0,003 | 0.012 | 0.014 | 0.016 | 0.018
.156 | | | -0.013 | | | | | -0.009 | -0.007 | | (-) Rotation
(counter-
clockwise). | 2 V
Ci
p'b
2 V | 021 | 017 | 016 | 013 | 005 | 1 | 028 | .004 | . 004 | 0.085 | | .007 | | 0. 074 | | 0, 043 | .000 | 001 | #### TABLE XX ROTATION TESTS. 10 BY 60 INCH CLARK Y WING WITH CLARK Y TIP AILERONS 100 PER CENT $\mathfrak o$ BY 20 PER CENT b/2; FLAPS UP 11° R. N.=609,000; VELOCITY=80 M. P. H.; YAW= -20° #### AILERONS FLOATING AND NEUTRAL C_{λ} is given for forced rotation at $\frac{p'b}{2V}$ =0.05, (+) aiding rotation, (-) damping rotation | | α | 0° | 12° | 14° | 16° | 18° | 20° | 22° | 25° | 30° | 40° | |---|----------------------------------|---------------|----------------|----------------|----------------|---------------|----------------|---------------|------------------|------------------|----------------| | | | | | 0 per cent s | xis | | | | | | | | (-) Rotation (counterclockwise)(+) Rotation (clockwise) | CZ. | -0.016
029 | 0.008
045 | 0.012
048 | 0.019
054 | 0.029
064 | 0.047
073 | 0.067
072 | 0, 055
→, 064 | 0.032
046 | 0.019
—.030 | | | | | 1 | 5 per cent a | xis | | | | | | | | (-) Rotation (counterclockwise)(+) Rotation (clockwise) | C _k
C _k | -0.019
028 | 0.006
—.014 | 0.010
—.048 | 0.016
—.053 | 0.027
063 | 0.046
—.072 | 0.066
070 | 0. 055
062 | 0.031
044 | 0.018
034 | | | | | 21 |) per cent a | ds | | | | | | | | (—) Rotation (counterclockwise) | cy
Cy | -0.021
028 | 0.005
043 | 0. 009
047 | 0.015
053 | 0. 029
063 | 0.048
—.072 | 0. 066
071 | 0.056
—.062 | 0. 033
—. 046 | 0, 020
034 | # TABLE XXI FORCE TESTS. 10 BY 60 INCH CLARK Y WING WITH CLARK Y TIP AILERONS 100 PER CENT c BY 20 PER CENT b/2; FLAPS UP 11°, TRIANGULAR END PLATES | ı | | | | | 3 | R. N.= | =609,0 | 00; VE | LOCI | TY=8 | 0 M. P | . н.; У | AW= | :0° | | | | | | |-------------------|--|---|---|------------------------|-----------------------|------------------------|------------------------|------------------------|------------------------|-------------------------|-------------------------|--------------------------|--------------------------------|-------------------------|-------------------------|-------------------------|------------------------|-----------------------|-------------------------| | α | | -10° | -5° | -3° | 0° | 5° | 10° | 12° | 14° | 16° | 17° | 18° | 20° | 22° | 25° | 30° | 40° | 50° | 60° | | | Allerons Floating Neutral—10 Per Cent Axis 0° -0.256 0.015 0.130 0.301 0.606 0.880 0.984 1.065 1.115 1.100 1.083 1.043 0.950 0.676 0.612 0.623 0.576 0.493 0.005 0.155 0.18 0.018 0.021 0.042 0.076 0.083 1.10 0.134 1.49 1.611 1.194 1.222 0.321 0.378 0.551 0.698 0.894 0.905 0.905 0.225 | CL
CD
SAF | -0.256 | | | | | | | | | | | | | | | 0.493
.834
-40° | | | | | | | 0.032 0.032 0.033 0.031 0.031 0.031 0.037 0.024 0.031
0.031 | | | | | | | | | | | | | | | | | | | Ci'
C''
Sar | 110° | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | | Ci'
Cn'
Sar | 20°
20°
20° | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | | Ci'
C''
daf | 30°
30° | | | | . 103
. 001
30° | | . 104
. 003
20° | | .003 | | .003 | | . 084
. 003
8° | .089
.003
6° | .089
.000
1° | 093
003
-3° | 070
006
12° | | | | | | | | , | · · · · · · | AILI | ERONS | FLOAT | ring, i | veuțr | AL-15] | PER OF | ENT A | KI8 | | | | | | | CL
CD
SAF | 0°
0° | -0.218
.048
19° | 0.062
.021
12° | 0.177
.018
4° | 0.326
.021
0° | 0.640
.042
-5° | 0.917
.074
—10° | 1.025
.093
—12° | 1.098
.109
—14° | 1. 140
. 130
—16° | 1.123
.144
-17° | 1. 115
. 161
(18° | 1.048
.191
-20° | 0.976
.220
-17° | 0. 693
. 323
—19° | 0. 638
. 394
—24° | 0. 634
. 547
31° | 0.590
.707
—37° | 0. 500
. 837
45° | | | <u>'</u> ' | | • | | · | | BIG | GHT AILE | RON UP- | -LEFT A | LERON D | own | | · | | | | | | | Cí'
Ca'
δAP | 10°
10°
10° | | | | 0.032
001
11° | | 0. 031
. 000
-3° | | 0.031
.001
-8° | | 0.030
.002
-11° | | 0.022
.002
-14° | 0.028
.001
-15° | 0.029
004
-18° | 0.036
006
20° | 0.025
006
26° | | | | Ci'
Ca'
Sar | 20°
20°
20° | | | | . 065
. 001
22° | | . 068
. 004
8° | | . 066
- 005
4° | | . 062
. 005
1° | | . 065
. 005
2° | . 064
. 002
—3° | . 063
004
6° | .067
006
10° | .048
003
-29° | | | | C'
C'
SAF | 30°
30°
30° | | | | 103
002
38° | | .102
.002
21° | | . 082
. 002
17° | | . 084
. 001
13° | | .088
.002
11° | .085
.002
7° | 081
003
5° | -: 091
-: 008
0° | 007
-10° | | | | | | · | - | | | AILER | ONS F | LOATE | NG, NI | EUTRAI | -20 PE | R CEN | T AXI | s | | | | · | | | CL
CD
SAF | 0°
0°
0° | -0. 105
- 047
21° | 0.092
.023
14° | 0. 216
. 019
13° | 0.383
.024
7° | 0. 672
. 043
-1° | 0.951
.075
—6° | 1. 050
. 091
-8° | 1. 128
. 110
11° | 1. 159
. 182
13° | 1. 154
. 147
—14° | 1. 142
.162
-15° | 1. 065
. 195
—15° | 1. 003
. 224
—17° | 0.705
.330
18° | 0.643
.400
25° | 0. 648
- 560
29° | 0.610
.719
—34° | 0. 518
. 850
-42° | | | | | | | | | RIC | GHT AILE | BON UP | -LEFT A | LEBON D | own | | | , | | | | | | Cí
Ch'
Sap | 10°
10°
10° | | | | 0.031
.000
11° | | 0.031
.000
—1° | | 0.031
.000
—4° | | 0.031
.000
—7° | | 0.021
0.030
.000
—10° | 0.030
001
-11° | 0.030
005
-13° | 0.034
006
18° | 0.026
006
-24° | | | | Ci'
Ca'
dar | 20°
20°
20° | | | | . 066
. 000
22° | | .068
.003
10° | | . 066
. 004
6° | | . 062
. 005
1° | | . 062
. 004
- 2° | .063
.000
-4° | 062
005
-7° | 068
007
12° | .048
009
19° | | | | Ct'
Cn'
dap | 30°
30° | | | | . 103
003
31° | | .097
.001
21° | | . 083
001
16° | | .081
.000
13° | | .080
.090
.000 | .085
.003 | 087
009
4° | . 091
007
0° | .070
008
-10° | | | ## TABLE XXII FORCE TESTS. 10 BY 60 INCH CLARK Y WING WITH CLARK Y TIP AILERONS 100 PER CENT c BY 20 PER CENT b/2; FLAPS UP 11°, TRIANGULAR END PLATES R. N.=609,000; VELOCITY=80 M. P. H.; YAW= -20° | a | t | -10° | -5° | -3° | 0° | 5° | 10° | 12° | 14° | 16° | 17° | 18° | 20° | 22° | 25° | 30° | 40° | 50° | 60° | |---------------------------------|----------------------|--|------------------------------------|---|--------------------------------------|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--|---|--|--|---|---|--|--------------------------------------|---| | | 84 | | | | | | AILER | ONS FL | OATIN | g, neu | TRAL- | 10 PER | CENT | AXIS | | | | | <u></u> | | CL
CD
Ci'
C''
SAF | 0°
0°
0° | -0.241
.060
003
.003
12° | 0.033
.038
004
.004
6° | 0.144
.037
007
.004
3° | 0. 296
.039
011
.005
-1° | 0. 554
. 055
020
. 006
-9° | 0. 755
. 079
013
. 007
13° | 0.841
.093
016
.008
-15° | 0.910
.109
020
.010
-17° | 0.967
.128
028
.012
-19° | 0. 982
. 137
032
. 013
20° | 0.994
.148
041
.014
21° | 0.990
.185
062
.016
-23° | 0.938
.224
062
.017
-25° | 0.688
.337
079
.022
-33° | 0. 622
. 387
045
. 023
-37° | 0.621
.529
033
.026
-47° | 0.586
.690
027
.031
56° | 0. 492
. 807
024
. 033
-64° | | | | | | | | | | RIGHT A | LEBON T | P-LEFT | AILERON | DOWN | | | | | | | | | C''
C''
SAP | 20°
20°
20° | | | | 0.080
.000
21° | | 0.047
.008
5° | | 0.070
.006
3° | | 0.074
.005
1° | | 0. 076
. 003
—3° | 0.076
.001
—4° | 0. 052
002
5° | 0.043
005
6° | 0.028
005
14° | | | | | | | | | | AILE | RONS | FLOAT | ING, N | EUTRA | L—15 PI | er cei | IXA T | 8 | | | | | - | | CL
CD
Ci'
Ca'
8 A P | 0°
0°
0°
0° | -0.242
.058
004
.002
13° | 0.047
.038
004
.003
8° | 0.162
.039
005
.003
.5° | 0.315
.040
009
.004 | 0. 576
. 055
015
. 005
4° | 0.774
.076
009
.006
-10° | 0.857
.090
013
.008
-12° | 0.934
.105
017
.010
-14° | 0.979
.128
025
.012
-17° | 0.998
.135
031
.013
18° | 1.019
.146
037
.014
-19° | 1.003
.184
056
.016
-21° | 0.946
.222
062
.018
-23° | 0. 672
. 329
087
. 024
-28° | 0. 616
. 385
047
. 023
38° | 0.620
.535
032
.026
-49° | 0. 578
.683
028
.031
57° | 0.488
.812
025
.034
-62° | | | | | | | | | I | UGHT AH | ERON UE | LEFT A | ileron d | own | | | | | | • | | | Ci'
Ca'
SAF | 20°
20°
20° | | | | 0.060
002
23° | | 0. 052
. 008
6° | | 0. 045
. 007
1° | | 0.070
.003
1° | | 0. 075
. 001
—3° | 0.075
.000
-4° | 0.058
005
5° | 0. 040
005
6° | 0.027
005
-13° | | | | | | | | | | AILE | RONS | FLOAT | ING, N | EUTRA | L—20 PI | ER CE | IXA TV | s | | | | • | | | CL
CD
Cl'
Cn'
8AF | 0°
0°
0° | 0. 241
. 059
005
. 002
13° | 0.046
.038
005
.004
8° | 0. 162
. 039
006
. 004
. 6° | 0.334
.040
009
.005
3° | 0. 575
. 055
015
. 006
6° | 0.789
.078
007
.007
-11° | 0.869
.091
007
.008
-12° | 0.943
.105
012
.010
-14° | 0.999
.124
019
.012
14° | 1. 025
. 134
024
. 013
15° | 1. 022
. 146
032
. 015
-16° | 1. 023
. 182
044
. 016
18° | 0. 965
. 222
054
. 018
20° | 0.682
.336
087
.025
25° | 0. 622
. 390
047
. 024
-40° | 0. 613
. 536
031
. 027
50° | 0.577
.689
027
.032
58° | 0. 492
. 817
026
. 035
-67° | | | | | | | | |) | UGHT AN | eron ui | -LEFT A | ileron d | own | | | | | | | | | Ci'
Cu'
dar | 20°
20°
20° | | | | 0.057
003
22° | | 0.057
.001
10° | | 0. 057
. 001
5° | | 0.061
.000
2° | | 0.065
001
-1° | 0.064
002
-4° | 0.058
005
-4° | 0.036
004
6° | 0.024
007
9° | | | # TABLE XXIII ROTATION TESTS. 10 BY 60 INCH CLARK Y WING WITH CLARK Y TIP AILERONS 100 PER CENT c BY 20 PER CENT b/2; FLAPS UP 11°, AND TRIANGULAR END PLATES R.
N.=609,000; VELOCITY= 80 M. P. H.; YAW=0° AILERONS FLOATING AND NEUTRAL C_{λ} is given for forced rotation at $\frac{p'b}{2V}$ =0.05, (+) aiding rotation, (-) damping rotation; $\frac{p'b}{2V}$ values are for free autorotation | | α | 00 | 12° | 14° | 16° | 18° | 19° | 20° | 21° | 22° | 23° | 24° | 25° | 26° | 28° | 30° | 40° | |-----------------------------|---|-------------|-------------|--------|----------------|-------------|---------|----------|--------|-------|--------|-------|--------|--------|------------|--------|--------| | | | | | | | 10 per | cent ax | is | | | | | | | | | | | (+) Rotation (clockwise) | C)
p'b | -0.022 | -0.020 | -0.018 | 013 | I | | | | 0.021 | | | -0.010 | | | -0.010 | 0.006 | | (-) Rotation (counterclock- | (p'b V C | 020 | 016 | 016 | 012 | .099
006 | 0. 137 | | 0. 204 | . 228 | | | .009 | | `

 | 007 | 007 | | wise) | 1 2v | <u> </u> | |
 | | | | | . 209 | . 167 | 0. 123 | 0.117 | .111 | 0.094 | 0.028 | | | | | | | | | | 15 per | cent ax | is | | | | | | | | | | | (+) Rotation (clockwise) | C)
p'b | -0.023 | -0.020 | -0.018 | 0. 01 4 | .001 | | 1 | | .020 | | | -0.010 | | | -0.009 | -0.008 | | (-) Rotation (counterclock- | (でかない)
(でかない)
(でかない) | 019 | 016 | 015 | 012 | .098
005 | 0. 145 | 1 | 0. 182 | . 223 | | | .009 | | | 004 | 006 | | wise) | $2\overline{V}$ | <u> </u> | | | | | | <u>'</u> | , 211 | . 167 | 0. 116 | | .111 | 0.097 | 0.043 | | | | | | | | | | 20 per | cent ax | 12 | | | | | | | | | | | (+) Rotation (clockwise) | Cy
p'b | -0.022 | -0.021 | -0.018 | -0.014 | 0.001 | 0 116 | | 0.170 | 0.018 | | | -0.010 | | | -0.008 | 0.008 | | (-) Rotation (counterclock- | () () () () () () () () () () | 020 | 017 | 014 | 011 | 005 | | 1 | | . 225 | | | . 007 | | | 004 | 005 | | wise) | 1 2V | | | | | | | | . 210 | . 167 | 0. 109 | | .106 | 0. 100 | 0.050 | `
} | | ## TABLE XXIV ROTATION TESTS. 10 BY 60 INCH CLARK Y WING WITH CLARK Y TIP AILERONS 100 PER CENT c BY 20 PER CENT b/2; FLAPS UP 11°, TRIANGULAR END PLATES R. N.=609,000; VELOCITY=80 M. P. H.; YAW= -20° # AILERONS FLOATING AND NEUTRAL C_{λ} is given for forced rotation at $\frac{p'b}{2V}$ =0.05, (+) aiding rotation, (-) damping rotation | | α | 0° | 12° | 14° | 16° | 18° | 20° | 22° | 25° | 30° | 40° | | | | |---|------------|---------------|---------------|---------------|--------------|--------------|--------------|----------------|------------------|------------------|---------------|--|--|--| | | | | 10 |) per cent a | ds | - | | | | | | | | | | (-) Rotation (counterclockwise) | CA
CA | -0.013
031 | -0.002
037 | 0.003
041 | 0.011
046 | 0.025
055 | 0.041
063 | 0.066
—.073 | 0. 052
059 | 0. 030
—. 047 | 0. 019
038 | | | | | 15 per cent axis | | | | | | | | | | | | | | | | (-) Rotation (counterclockwise)(+, Rotation (clockwise) | C'Y
C'Y | -0.014
030 | -0.006
033 | -0.001
037 | 0.006
042 | 0.022
052 | 0.038
060 | 0.063
068 | 0. 057
—. 068 | 0. 028
045 | 0.018
034 | | | | | | | | |) per cent as | ds. | | | | | | | | | | | (-) Rotation (counterclockwise) | C7
C7 | -0.016
030 | -0.006
029 | -0.004
033 | 0.003
038 | 0.017
047 | 0.033
055 | 0.061
065 | 0. 056
064 | 0.031
—.046 | 0.018
034 | | | | # TABLE XXV CRITERIONS SHOWING RELATIVE MERITS OF AILERONS | Subject | \$ | Plain (| Symmetrical floating tip | | | Symmetrical
floating tip alle- | | Symmetrical floating tip | | | | |---|---|---|---|------------------------|------------------------|--|---|----------------------------------|---|------------------------|-------------------------------| | | | 25 per cent c
by 40 per cent
b/z (assumed
standard size) | 40 per cent c
by 30 per cent
b/2 (rigged up
10° when
neutral) | by 20 | per cent | per cent c
t b/z; flaps
tes; float-
ons 40° | rons 100 per cent c
by 20 per cent b/s;
15 per cent axis;
flaps 0°; floating
allerons 40° diff-
erence | | allerons 100 per cent c
by 20 per cent b/s; flaps
2° up, no end plates;
floating allerons 40°
difference. | | | | | | Standard
8=25° up
25° down | Differential
No. 2
8=50° up
7° down | 10 per
cent
axis | 15 per
cent
axis | 20 per
cent
axis | Oircular
end plates | Trian-
gular
end
plates | 10 per
cent
axis | 15 per
cent
axis | 20 per
cent
axis | | Wing area or minimum | Maximum C _L | 1. 270 | 1. 173 | 1.074 | 1.098 | 1. 117 | 1.102 | 1.103 | 1.090 | 1. 115 | 1.130 | | speed.
Speed range
Rate of climb | $ \begin{array}{c} \text{Max } C_L/\text{Mfin } C_D \\ L/D \text{ at } C_L = 0.70 \end{array} $ | 81.9
15.9 | 65. 2
17. 1 | 59.8
12.1 | 64.6
12.7 | 50.8
12.5 | 61. 2
13. 6 | 69. 0
13. 5 | 67. 7
13. 1 | 68. 0
13. 3 | 60. 4
13. 7 | | Lateral controllability | $\begin{bmatrix} RC & \alpha = 0^{\circ} \\ RC & \alpha = 10^{\circ} \end{bmatrix}$ | | . 248
. 075 | . 299
. 086 | .304
.085 | . 342
Ailerons
flutter. | . 224
. 072 | . 263
. 078 | . 262
. 079 | . 269
. 082 | . 294
Ailerons
flutter. | | | RC α=20° | . 038
. 017 | 1.078
.027 | .065
.092 | . 065
. 091 | . 062
. 091 | . 057
. 115 | . 053
. 013 | .061 | .063
.092 | . 007
. 089 | | Lateral control with sideslip. | Maximum α at which allerons will bal-
ance CY due to 20° yaw. | 20° | 26° | 21° | 20° | 20° | All
Angles. | 25° | 20° | 20° | 20° | | Yawing moments due
to allerons; (+) favor-
able, (-) unfavorable. | (C ₁ α= 0° | 007 | . 021 | . 002 | .001 | .001 | . 001 | .002 | { *. 001
001 | } | 001 | | |) | 004 | .026 | .018 | .016 | Ailerons flutter. | . 016 | . 017 | . 015 | | Ailerons
fluttor. | | | | | .030
(.009 | .033 | .030 | . 023 | . 026 | . 025 | . 029 | .027 | .029 | | | (C _a α=30° | 008 | { 2:001 | } .030 | . 029 | . 029 | . 037 | . 030 | . 028 | .027 | . 027 | | Lateral stability
(84=0°). | α for initial instability in rolling α for initial instability at $p'b/2V = 0.05$: | 18° | 20° | 20° | 20° | 19° | 19° | 19° | 20° | 19° | 19° | | | Yaw=0°
Yaw=20° | | 19°
13° | 18°
10° | 19°
10° | 18°
10° | 18°
14° | 18°
13° | 18°
10° | 18°
10° | 18° | | | Yaw = 20° | . 048
. 093 | .015
.072 | . 018
. 061 | . 017
. 061 | . 017
. 062 | .017
.047 | . 025
. 062 | .018
.064 | . 018
. 062 | . 020
. 065 | Footnotes at end of table. # FLOATING TIP AILERONS ON RECTANGULAR WINGS ## TABLE XXV-Continued # CRITERIONS SHOWING RELATIVE MERITS OF AILERONS—Continued | Subject | Criterion | Symmetrical floating tip
aflerons 100 per cent c by 20
percent b/s; flaps 2° up;
triangular end plates;
floating aflerons 40°
difference. | | | Clark Y
rons 10
per cer
no en
ailerons | floating
10 per cen
1 b/2; flap
1 d plates;
13 40° differ | tip alle-
t c by 20
s 11° up,
floating
ence. | Clark Y floating tip allerons 100 per cent c by 20 per cent b/s; fleps 11° up, triangular end plates; floating allerons 40° difference. | | | |---
--|--|--------------------------|--|--|---|--|---|--------------------------|--------------------------| | | | 10 per
cent axis | 15 per
cent axis | 20 per
cent axis | 10 per
cent axis | 15 per
cent axis | 20 per
cent axis | 10 per
cent axis | 15 per
cent axis | 20 per
cent axis | | Wing area or minimum speed
Speed range
Rate of climb | Maximum C_L
Max C_L/M in C_D
L/D at $C_L=0.70$ | 1.095
64.0
14.0 | 1, 125
68. 5
14. 7 | 1. 158
63. 2
15. 6 | 1.093
65.5
12.8 | 1. 118
61. 1
12. 5 | 1. 129
51. 3
13. 2 | 1. 115
63. 0
13. 6 | 1. 140
62. 6
14. 6 | 1. 160
59. 8
15. 5 | | Lateral controllability | RC α=20° | .216
.072 | . 220
. 072
. 051 | . 175
Aflerons
flutter.
. 052 | . 257
. 087
. 065 | . 273
. 085
. 065 | . 298
. 083
. 064 | . 218
. 075
. 050 | .203
.071 | . 169
. 070
. 061 | | Lateral control with sideslip | [RC α≃30° | .104
23° | . 104
23° | .102
21° | .090
20° | .090
20° | .089
20° | . 098
23° | . 095
23° | .089
23° | | Yawing moments due to alle-
rons; (+) favorable, (-) un-
favorable. | $\begin{bmatrix} C_n & \alpha = 0^{\circ} \\ C_n & \alpha = 10^{\circ} \\ \end{bmatrix}$ $\begin{bmatrix} C_n & \alpha = 20^{\circ} \\ C_n & \alpha = 30^{\circ} \end{bmatrix}$ | l | . 015
. 023
. 029 | Ailerons
flutter.
. 023
. 029 | . 001
. 018
. 032
. 028 | . 016
. 031
. 028 | 001
. 015
. 029
. 027 | . 002
. 017
. 025
. 029 | 2 | .014
.028
.037 | | Lateral stability $(\delta_A = 0^\circ)$ | $ \begin{pmatrix} \alpha \text{ for initial instability in rolling} \\ \alpha \text{ for initial instability at } p'b/2V=0.05: \\ Yaw=0^0 \\ Yaw=20^0 \\ Maximum unstable C_{\lambda}: Yaw=20^{\circ} \\ Yaw=20^{\circ} \\ Yaw=20^{\circ} \\ Yaw=20^{\circ} \\ \end{pmatrix} $ | 19° 18° 12° .022 .057 | 18° 18° 14° . 020 | 18°
18°
15°
.019
.059 | 19° 18° 9° . 017 | 19° 18° 10° . 027 . 066 | 19° 18° 10° .018 .066 | 18°
18°
13°
. 021
. 066 | 18° 18° 14° .020 .063 | 19° 18° 16° .018 | ¹ RC has a minimum value of 0.063 at $\alpha=17^\circ$ and a maximum of 0.086 at $\alpha=22^\circ$. 2 Where the maximum yawing moments occur below maximum alleron deflection, the number 2 indicates that the deflection of the up alleron was 10°. 3 This wing is unstable from $\alpha=4^\circ$ to $\alpha=8^\circ$ and is stable from $\alpha=9^\circ$ to $\alpha=16^\circ$, above $\alpha=16^\circ$ the wing is unstable. 149900—33——33